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PREFACE

This paper constitutes a deliverable to Task T-R2-597.01, "SDI Battle Management/
C3 Studies," in accordance with Section 5.0-Schedule--of the task order dated 1 October

1990. The Institute for Defense Analyses (IDA) was tasked by the Strategic Defense
Initiative Organization (SDIO) to monitor, evaluate, and facmiitate the development of

tracking algorithms. This paper undertakes to survey the state of the practice and the state
of the art in multiple sensor, multiple target tracking algorithms under development for or
applicable to ballistic missile defense in order to ascertain the status of activities in this

critical area.

The author would like to gratefully acknowledge the comments of Parney Aibright
and Albert Perrella, and especial.y Oliver Drummond, Keh-Ping Dunn, and Gabriel

Frenkel.
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EXECUTIVE SUMMARY

Until recently, most of the Strategic Defense Initiative Organization's (SDIO)
tracking research and development fo,.cus has been on passive electrooptical sensors housed

on orbiting satellites or ground-based rockets launched into sub-orbitaltrajectcries. These
sensors, as part of a so-called Phase 1 defense system, were to detect, measure, track, and

discriminate large numbers of missile boosters and reentry vehicles (RVs) in a full-force

Soviet, strategic attack as they fly from boost phase through midcourse to early reentry, in

often noisy background clutter environments, closely interspersed during p. :dons of their

flights with many escorting decoys. Ground-based radars, which have always been a part
of SDIO terminal ballistic missile defense systems, have not been, critical items in Phase 1
tracking research and development. The emphasis instead has been on mastering the great
challenges of conducting surveillance with sensors that generate angles-only measurements
(also known as lines of sight or directions to the target) and intensity measurements during
boost and midcourse, to execute intercepts as early after launch as possible. Much of this
report is couched in terms of electrooptical sensors.

Recently, SDIO's mission has been expanded, to emphasize theater ballistic missile
defense (TMD) and defense against accidental or unauthorized strategic missile attacks in a
mission known as the Global Protection Against Limited Strikes (GPALS). Radars are

critical sensors in TMD and GPALS. SDIO tracking research and development efforts now
need to be focused on two issues. One is on executing the ground-based TMID mission and
on extending the battle space of TMD systems by utilizing tracking information from
satellite-based systems. The other is the full strategic'threat and a Phase 1 defense.

This report addresses the latest developments and some of the critical issues
pertaining to tracking algorithm development for ballistic missile defense (BMD). For the
last several years, tracking has been recognized as one of the most complex and challenging
tasks in BMD. During this time tracking algorithm development has been vigorously
pursued, with substantial results and continuing progress. Part I of this report is a survey
of the latest developments in this area. In spite of this progress, however, many critical
-issues remain unresolved. Part II of this report is a discussion of those critical issues.
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The two parts are complementary. Part I has the character of a survey and

describes the activities in different organizations and the results obtained in critical technical

areas. Part II is essentially a technical analysis of issues, problems, and candidate 0

approaches in selected key areas. The following major subjects are discussed in the two

parts:

Part I: Survey of progress 'in some key tracking technologies--

describes developments in two areas pertaining to algorithm development and two related to

algorithm simulation and evaluation:

* Data Association

• Cluster Tracking

• Tracking Simulation

* The Surveillance Testbed (STB).

Part II: Some remaining problems pertaining to the design,

utilization, and evaluaticn of tracking algorithms covers four topics:

Birth'to-Death Tracking

* Booster Tracking and Template Matching

• Midcourse Track Initiation 9

• Scoring Methods for Track Performance.

PART I SURVEY OF PROGRESS IN SOME KEY TRACKING

TECHNOLOGIES

In Part I, we undertake'to provide a sense of where things stand regarding:

* How many targets can be tracked, how well, and in what densities and
scenarios?

* In cumputer simulations to date, how many targets have t-.een tracked, how
well, and in what densities and scenarios?

* By what criteria should computer simulations be judged?'

* Where is additional work required and what are the critical issues in algorithm

development, simulation, and evaluation?

Data Association

Data association, oftea referred to as scan-to-scan correlation, is the decision

process of linking observations and tracks from the same target. Data association is very

S-2



challenging in a dense observation environment arising from clutter, false alarms, and

multiple targets and observations arising from unresolved closely spaced objects (CSOs).

An electrooptical sensor's ability to resolve closely spaced objects depends on the

properties of the optics and focal plane, the sensor signal processing, and the range and

viewing geometry to the targets. An observation from a group of unresolvable closely

spaced objects may be indistinguishable from the observation for a single object. A CSO

may also appear as a relatively large (compared to the signal from individual objects) clump

on the sensor's detectors in what is referred to as an extended object.

Table S- I shows the algorithms and key features for data association methods being
applied to BMD. High observation density is the single most defining characteristic of SDI
tracking problems, particularly for Phase 1 defense systems. It is the determinative factor
in the selection, implemenfation, and complexity of data association algorithms.

Table S-1. Data Association Algorithms

Type Feature Explanation

Assignment Coordination Assignment can be performed on each track
independently of all other tracks (locally) or on all the
tracks simultaneously in a coordinated fashion (globally).

Dimension Assignment can be performed on two data lists, such as
one set of tracks and the new frame of observations, or
more than two data lists such as one set of tracks and
multiple frames of data.

Number Assignment Is usually unique, such as one observation
to one track, but can also be multipie, such as multiple
observations to one track or vice versa.

Probabilistic Data Dimension Tracks are updated by an average over all feasibly
Associatior. associated observations from one or more frames of

data.

Multiple Hypothuses Splitting Create additional tracks for each feasibly associated
observation.

Observation- Consider each observation in turn as originating
oriented from a new target or a feasibly associated existing track.

For the high observation densities of Phase 1 scenarios, whezher good tracking
performance can be accomplished at affordable, or for that matter achievable, computational
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expense very much remains an open question. For TMD and GPALS data association will
be less challenging, but, depending on the scenario, will not necessarily be no challenge.

Judgments on tracking performance for TMJ) and GPALS, as for Phase 1, must await high
detail, high fidelity, credible simulations.

Cluster Tracking

One innovative approach to managing the high density threat, particularly during
early midcourse and Phase 1, is to forgo tracking individual objects and instead to track
closely spaced observations as a group or cluster in terms of the mean and extent. C'lever
modeling was required to devise a filter to track~ the cluster extent. Cluster tracking raises
many issues, not the least of which is that since individual target tracks are ultimately what
is required, when is cluster tracking performed rather than individual target tracking and
vice versa? Also, when and how is the transition between c~luster and individual object,
tracking accomplished?

The Panels have defined a spectrum of group tracking approaches:

"* Group: Group properties alone are tracked.
"* Group with Simple Individual: Simple ind 'ividual object information is tracked

but the tracking of group properties is emphasized.
0 Individual and Simple Group: Simple group information is tracked but

individual object tracking is emphasized.'

* Individual object tracking: Individual object tracking alone is performed.

The group tracking' efforts with which we ha .ve some detailed information are
described in Table S-2. Much more work needs to be done, to explore the diversity of
algorithms and algorithm architectures and the critical issues associated with group
tracking. Work to date has only begun to address the problems and possibilities.

The Surveillance Testbed (STB) will provide an important environment to
investigate these issues.. There is one group tracking algorithm in the initial set of test
articles being hosted on the STB. The status of group tracking remains for the most par as
it was last year- In need of experiments and analyses that explore the diversity of group
tracking algorithms and algorithm architectures and the critical issues outlined above.
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Table S-2. Cluster Tracking Algorithms

Contractor Princl;al Developers Brief Description

Hughes Aircraft and Oliver Drummond, Multiple Sensor algorithm for tracking
General Dynamics Samuel Blackman cluster centroid and extent.

MIT/Lincoln Laboratory C.B. Chang, Keh-Ping Dunn, Individual tracks for the observations
* Ming Tsai defining the edge of a cluster to form

tracks for cluster members, which are
assumed to be moving in parallel with
edges.

Nichols Research Robert Osterheld, Develop indiv;dual object tracks of
i Corporation Lisa Brahm RVs and decoyt deployed off a

common PBV through their closely
spaced phase.

Teledyne Brown Keith Maples Track cluster centroid and the
parameters of an RV-decoy deploy-

p ment model to develop individual
object tracks.

* Tracking Simulations'

Observation density is also the single most defining characteristic in SDI tracking

simulations, particularly Phase 1 simulations. Tracking simulations measure computational

performance (speed and memory) and tracking performance (estimation and association

B performance measures such as estimation accuracy, credibility, and reliability and track

purity). As a practical matter, many simulations emphasize one aspect over the other.

Simulations with larger and more dense threats are more often used to investigate

computational performance because the data association algorithm and tracking filter

design, implementation, and experimentation are compromised by insufficient computa-

tional resources. 'Those data association algorithms and tracking filters are selected more

for their computational thriftiness than for their tracking performance. High observation

density indicates the level of ambitiousness and complexity in the simulation, determines
W the adequacy of comnuter resources, and must be considered in the measurement of the

level of difficulty and in the judgement of tht, quality of tracking performance.

Good computational performance by itself is necessary but not sufficient. The

same is true for estimation and association performance. Ten thousand objects have beenp
tracked in real-time but without much attention to estimation and association performance.
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In one simulation 460 midcourse objects in moderate Phase I density wcre tracked and in
another simulation 125 midcourse objects in heavy Phase I density were tracked--both with

good estimation performance, given crucial, unverified, and very optimistic assumptions

concerning the quality of boost-phase tracks handed over to the midcourse tracking

algorithms.

When ore considers tracking simulations four issues should be kept in mind: 4

* How challenging is the threat being tracked? Tracking simulations can be
likened to diving and ice skating competitions, for instance, in the sense that
performance must be evaluated in part by the level of difficulty of the effort.

* What are the important assumptions and initial conditions? This is something
of an extension to assessing the level of challenge'of the threat. There are, .

several' key concerns: To what extent are clutter and background effects
included and how are they modeled? What is assumed for sensor properties
such as resolution and accuracy? How is the sensor and signal processing
modeled? Is sensor tasking scripted in advance or performed on-line? Are
data misassociations permitted? Start-up conditions can grossly affect tracking
performance. For midcourse simulations the key issue concerns how
midcourse tracks are initiated: Does the simulation rely on tracks handed over
from boost phase and if so how good are those track hand-overs?

* What are the key algorithm details? It is important to know some detail of the 4
algorithms and algorithm architecture to appreciate the context of the work.

* What are the scoring methods and measures of effectiveness? How are tracks
associated with true targets for evaluation?

Table S-3 lists some published results of tracking simulations. For reasons that
include competitiveness, not all simulation results are published. We list only those
simulations where we have some moderate sense of the answers to the four questions
above.

Surveillance Testbed

Substantial progress has been made towards construction of a testbed to experiment.
on and evaluate alternative surveillance algorithms--detection, tracking, discrimination, and
sensor tasking--and to assess ballistic missile defense system-level surveillance
performance. While the STB is being constructed to support both purposes, to the extent

that one takes precedence over the other, first priority must go to evaluation of surveillance
algorithms: an emphasis in favor of experimentation on algorithms increases the prospects
for a testbed that successfully assists in the development of surveillance algorithms and
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accurately assesses system-level surveillance performance. The program seems on track to

ensuring the creation of a facility that is sorely needed by the SDI tracking community.

-- Table S-3. Mldcourse and Birth-to-Death Tracking Simulations

Number and Density of
Omanization Threat Objects Simulation Objective

Advanced Systems 460; noderate density Investigate tracking performance
Architectures

Alphatech 6,260 Investigate computational performance

125 (1 booster Investigate tracking performance

50 Investigate performance of various
assignment algorithms

ESL 460; moderate density Investigate tracking and computational
performance

GSTS 648 Investigate tracking perlrmance

NTBIC Subsets of OTT-1 'of Investigate computational and tracking
various densities performance

Sandia National Laboratories 10,000 Investigate computational performance

The Surveillance Testbed is critical to SDIO. The STB will be the SDIO facility
where contractors can with a miniLum of modification run their own software in high

fidelity, high detail surveillance simulations to verify detection, tracking, discrimination,
and sensor tasking. A contractor's algorithms can be tested by themselves on the STB as
well as in their role in a complete surveillance system by inserting them into a
complementary set of "house algorithms," algorithms maintained on the STB. With SDIO
approved threat scenarios, and SDIO supplied signal generation and sensor and signal
processing data that are the inputs to the surveillance algorithms, critical algorithm
experimentation and evaluation can take place in a controlled environment and scored
according to standardized methods, thereby facilitating performance comparisons. By
having the STB supply the inputs that drive high fidelity, high detail simulations, SDIO
saves the resources otherwise spent when each contractor develops their own extensive

simulation drivers.
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The SDI Tracking Panels have played a critical role in the development of the STB.
Before the STB program was started the members of the Tracking Panels, representing
tracking algorithm designers from across government, FFPJDCs, contractors and academe,

called for an algorithm testbed of this sort. A testbed on which experimentation could be
performed and high detail, high fidelity threat scenarios complete with sensor measurement
data could be produced and supplied to contractors for use in their own testbeds. During
the development of the STB, the Panels provided a peer review of the STB development 4

plans and supplied the input of the intended user community. The Panels deserve credit for
helping to shape the STB into a facility that should well serve $DIO and its contractor

community.
I

The Panels identified and analyzed three different critical interface issues for the

STB:

* Interfaces between individual test articles and the STB test environment;

I Tnterface requirements stemming from permitting feedback from tracking U
algorithm to sensor and signal processor, such as sensor tasking; and

0 Interfaces between test articles.

It should be no surprise that hosting tracking algorithms on the STB will rer'uire
some software modifications. Everyone can agree that it is imperative to keep the I
modifications to a minimum. The real issues are what so-t of modifications, how many,
and by whom, the STB contractor or the tracking algorithm contractor? For the most part,
it must be the tracking algorithm developer who modifies their software since they are the
most knowledgeable of the code's contents. But their willingness to rutilize the STB
depends on the scope of the modifications. The STB's government sponsors need to
appreciate that, everything else in order, the STB will fail or succeed based on the scope of
software changes required for hosting surveillance algorithms.

The Panels' recommendations to the STB are'summarized as:
* Development of flexible interfaces between STB test environment and tracking

algorithms must be emphasized early in order to best ensure that the STB
achieves its goal of providing a testbed for developing and evaluating
alternative surveillance algorithms;

Limited emphasis should be given to early results of system-level performance
experiments with the "representative, baseline" algorithms used for testbed
integration validation;

The STB must support a portable testbed facility.

S-8
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These testbed priorities should be clearly established:

, Vigorous surveillance algorithm development must precede surveillance system
evaluation;

Prepare early to accommodate the diversity of tracking algorithms and
algorithm architectures;

• Interfaces between test environment and tracking algorithms must be flexible
and robust;

Only after representative surveillance performance is appreciated and quantified
by experiments on individual surveillance algorithms can system-level
surveillance performance be assessed accurately.

PART II. SOME REMAINING PROBLEMS PERTAINING TO THE
DESIGN, UTILIZATION, AND EVALUATION OF TRACKING
ALGORITHMS

Birth-to-Death Tracking

Ballistic missile defense birth-to-death tracking is the concept of maintaining
continuous tracks on targets from launch through to impact by fusing tracks across sensor

* elements. Birth-to-death tracking schemes range from the grand to the temperate. In the
grandest design of birth-to-death tracking, downstream narrow field-of-view sensors that
lack adequate independent search capability are enabled by pointing directions from
upstream sensors. Additionally, downstream sensors initialize tracks by relying entirely on-
upstream tra,-k hand-overs. Boost-phase tracks would be handed over to the post-boost

and midcourse surveillance sensors for continuation: booster burnout position and velocity
would initialize the post-boost vehicle (PBV) track. Narrow field-of-view optical
midcourse sensors would be directed where to look for the PBV rather than independently

searching. Ground-based radars would also be cucd where to look for midcourse and re-
entering objects to gain increased detection ranges. As the PBV dispenses reentry vehicles
(RVs) and dcbys, tracks for each would be established by spawning new tracks from the
continuing PBV track. Every object in the midcourse then could be traced back to its
origin, PBV and booster, and a track for each established essentially by continuation of
booster tracks. There would never be need during midcourse for the "cold start" track
initiation procedures of assembly of a sequence of measurements for initial orbit
determination data processing. All midcourse tracks would be initialized by "warm start"

9
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track initiation: hand-over of track data from upstream sensor elements and spawning new

tracks from existing tracks.

Track hand-overs from boost and midcourse to ground-based defense' systems

could enable a number of enhancements in their performance and battle space, including

Cues to the ground-based radars to concentrate their search into narrow fields-
of-view to gain increased detection ranges;

Early commit of ground-based interceptors before their radars see the targets
but the radars would guide the interceptors as the targets come into view; and

* Launch of ground-based interceptors entirely independent of their radars where
tracks from space-based sensors provide in-flight target updates that enable on-
board guidance algorithms to fly the interceptors into the close proximity of
their targets, where the interceptor's own on-board sensors would take over.

Birth-to-death tracking in its grandest design is logical and efficient. Such schemes
are ambitious, perhaps even feasible. But, as Table S-4 indicates, there are significant
liabilities in these approaches.

Table S-4. Key Features of Birth-to-Death Tracking

Advantaoes Liabilities

Omniscient accounting of threat objects Timely, seamless handover required

Enabling of narrow field-of-view sensors Susceptibility to catastrophic failure

Facilitates track initiation

Reduce computational requirements

Temperate birth-to-death tracking schemes with less than absolute reliance 'on
seamless link between sensors and sensor elements are directed towards:

* Obviating cold start track initiation if upstream tracks are available;

* Assisting rather than enabling relatively narrow field-of-view sensors;

* Assisting rather than supplanting individual sensors and sensor elements.

Ultimately, it is a question of capability versus robustness against catastrophic
failure. Each sensor element ind each individual sensor must be capable of searching a
reasonable surveillance region and performing cold start track initiation to reduce
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*/ vulnerability and to constitute a system that works in a world of communications delays

and misdirections and the unexpected, but only if adequate capability is achievable or

affordable in individual sensors or sensor elements.

Booster Tracking and Template Matching

Boost-phase tracking experience to date is limited. What can be performed well is

the tracking of a small number of targets across the foca! plane (focal plane tracking) of a

passive electrooptical sensor on-board geostationary satellites without explicitly modeling

the boosters' detailed three-dimensional dynamics'or explicitly tracking the boosters' three-

dimensional trajectory. Historical averages and a priori assumptions for booster altitude

versus ground range flight profiles and intensity versus time profiles, known as templates,

are used to estimate launch locations, times, and azimuths, and to identify missile types.

But with regard to using focal plane tracks and templates to predict future siates in post-

boost, midcourse, and reentry, the accuracy required for BMD has not yet been

demonstrated. Brilliant Pebble booster tracking of a particular sort has been demonstrated
in limn.ted simulations with low fidelity data and without clutter. Extensive simulations that

demonstrate convincingly the tracking accuracy required for booster surveillance, good
weapon-to-target assignment, and good pebble guidance performance remain to be done.

In this report we review critical issues in, and methods of, booster tracking and template

matching.

Booster tracking algorithms can:

• Estimate so-called tactical parameters, which are the missile launch locations,
times, azimuths, altitudes, and the degree to which the missile' is lofted or
depressed from a nominal trajectory;

* Assess the number and types of missiles launched in the raid-

* Predict missile payload impact points on the earth;

* Cue midcourse and terminal ballistic missile defense systems, both sensors and
interceptors; and

* Provide fire control information for booster interception.

Tactical parameter estimation, raid assessment, and coarse impact point prediction

constitute the traditional tactical warning and attack assessment (TW/AA) functions. More

precise impact point predictions and cues to midcourse and terminal sensors and

interceptors can enhance midcourse and terminal BMD performance and also enhance

TW/AA performance.
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As shown in Table S-5, there are essentially three data processing or filtering

methods for tracking boosters.

Table S-5. Booster Tracking Filter Methods

Method Critical Issues

Kalman Filter Modeling and integration of three-dimensional booster dynamics should give
best pedtormance if viable, reliable, and credible. Need to compensate for
model errors, including maneuvers.

Line-of-sight Data association of lines-of-sight in a dense observaiion environment.
triangulation Accuracy of velocity estimates is limited by the interpolation and numerical

differentiation procedures.

Least squares Use of historical averages and a priori assumptions for altitude versus ground
(Template range flight profiles (templates) which also assumes trajectories for altitude
matching) are two dimensional. Convergence conditions and accuracy and the effects

of clutter, false alarms, and multiple targets.

Two general fundamental issues attend the use of historical averages and a priori

assumptions on booster altitude versus ground range profiles and assumed two-

dimensional flight trajectories: 0

* To which template should the sensor data be matched?

* What are thereliability and credibility of relying on these assumptions?

There are essentially four sources of templates:

- The Master Target Model Book, published by the Aerospace Corporation,
contains templates for altitude, ground range, intensity, mass, thrust, etc.
These profiles, typically one per missile type and mod, are from reconstructed
trajectories using data observed by national technical means on systems that
have already flown.

* The SDIO Threat generation community, apparently so far in an ad hoc
manner, has produced to specification a family of templates representing
lofting and depression for the future missile systems that typically populate
SDIO threat .,cenarios. It is important to emphasize these are not based on 0
reconstructed trajm4:tories.

* Contractors with sophisticated booster modeling capabilities augmenting
whatever templates they are given from whatever source to create lofted and
depressed templates.

S-12

Si . .. i



Averages over threat trajectories in a particular attack scenario on a particular
threat tape.

Clearly, use, of the last sort of template is suspect. The immediate relationship of

the booster trajectories in the threat with the templates that are then used to track them, the

very same trajectories that generated the templates, produces possibly invalid r".sults and

grossly misleading performance assessments. This source of templates naust be strongly

discouraged.

The Master Target Model Book cannot supply the templates for SDIO scenarios set

in the future because of the mismatch between templates for missile systems that have been

observed, on the one hand, and SDIO threat scenarios that involve future missile systems
that have yet to fly and for which no templates based on observed data can be constructed,

on the other. The community that produces the Model Book could be asked to produce
templates for future systems but this would represent a departure from their standard
methods, most importantly the reliance on observed data. SDIO, possibly by way of its
Threat Working Group, possibly in conjunction with the intelligence community, needs to
firmly control the development and promulgation of templates for use by SDIO contractors.
There currently is a gap of immense proportions between the intelligence community
providing templates on current inventory missiles and the free-for-all of assumptions on the
character and content of template data being made by SDIO contractors. If control is not
taken by SDIO, the validity of all template matching results is at risk and could be,
considered suspect.

The most important issue is the degree to which templates are identical to the
trajectories being tracked. Should they match? If the altitude versus ground range

templates closely parallel the booster trajectories to be tracked then good template matching

performance should be expected. In a sense, close identity is akin to having assumed away
the problem: All the uncertainty in the booster motion is removed and captured in the
a priori data bases of templates. Unless we believe we can assume away the problem,
templates, in general, should not be identical to the actual booster trajectories to be tracked.
One exception might be third world missile forces whose unsophisticated guidance systems
would keep the booster trajectories to simple flight profiles.

The bottom line is that reliance on a priori information may leave the algorithm
vulnerable to boosters that do not do the expected, or the mean, or are of type and
circumstance outside the a priori information's domain of applicability. The consequence
may be susceptiblity to catastrophic failure. Balance is the key: use a priori information
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when necessary but in a manner that is as flexible as possiblt and that does not leave undue

susceptibility to catastrophic failure.

Midcourse Track Initiation

Midcourse angles-only initial orbit determination is an old subject with a pedigree

that extends back almost two hundred years to Gauss and Laplace. The fundamental
midcourse tracking challenge to this time has been the large number and high density of
missile booster, RVs, decoys, and clutter to be tracked. As the severity of the threat

declines, as measured by density of objects seen by a sensor, from a defense against a full
Soviet attack, to a defense against accidental or unauthorized missile launches, to theater
missile defense, data association becomes less of a concern. Single satellite angles-only

track initiation in the dense observation environments of Phase 1, and perhaps GPALS, is a

critical issue.

The issues in BMD cold start track initiation, both for the template matching in
boost-phase aid for midcourse, are first the ability, in a dense observation environment, to
assemble a reasonably small number of credible time sequences of angles-only

measurements without being able to use models for the detailed models for the three-
dimensional target motion. The other issue is the reliability of the initial trajectory/orbit 0
determination algorithms and the accuracy, precision, and credibility ,w' their initial state
estimates and estimation errors. Low precision state estimation errors will lead to greatly

complicated data associatior problems for track maintenance in dense observation
environments. The critical issue is to gain high enough precision estimation errors to
mitigate data association problems. We know of no simulations where these issues are

thoroughly examined.

Scoring Methods for Tracking Performance

Ultimately, the performance of tracking algorithms is judged by the success, or

failure, of the mission they support. But it is also important to evaluate tracking algorithms
in computer simulations to diagnose and evaluate their performance. Evaluation of tracking
performance is straightforward in an environment of few, widely spaced targets and no
false alarms or clutter. In this sparse environment, a track is consistently updated with
measurements from the same target. The track, or state estimate, is then associated and

compared with the true state of the target, which is obvious as identified by the one source

of the measurements.
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Performance evaluation is more complex in a dense environment of:

"• False alarms;

"• Clutter,

"* Multiple targets;

"• Individual observations arising from unresolved closely spaced objects
(CSOs).

With misassociations and unresolved CSOs, the source of the measurements in a

track will not be a clear indication of a single target, thus confusing which track is' to be

compared with the true state of a target. Furthermore, in a dense environment, there may

be

"* Missed tracks: targets without tracks;

"* Redundant tracks: more thai one track for one target;

• Spurious tracks: tracks for no targets whatsoever.

Scoring tracking algorithm estimation and association performance has been a major

issue in SDI simulations. Some algorithms may generate many "extra" tracks, such as in

multiple hypothesis tracking, but the track purity and state estimation accuracy of the N best

are better than the N tracks of algorithms that do not knowingly generate "extra" tracks,

such as local nearest neighbor. Insofar as track purity and state estimation are concerned,

the former is to be preferred, whereas the latter may be preferred from the standpoint of

computational and memory costs and size, weight, and power of on-board processors.

These methods were initially developed by individuals and further developed and

adapted by the members of the SDI Panels on Tracking. It is part of an ongoing process

and is not to be considerd as the last word on the subject.

Track purity over a time interval refers to the degree to which a track's

measurements over that time originate from a particular target. In single target tracking

without false alarms and clutter, track purity is ensured and the association of track-to-truth

unambiguous. Multiple target tracking typically involves many impure tracks and,

therefore, ambiguous track-to-truth association. Ate will define scoring criteria for track

purity in dense target environments. In principle; track purity can be used to determine

track-to-truth associations but in dense target environments and for some MTT algorithms

the cowcept of track purity loses some of its meaning.
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We suggest a method for track-to-truth association based on a global nearest

neighbor assignment approach. At each of the designated evaluation times, a global nearest

neighbor assignment algorithm is executed to uniquely associate tracks and targets. After

tracks and truth have been asscciated, we can evaluate performance criteria for the two
functions of a multiple target tracking algorithm:

1. Data association. This function selects the observations to be used by the track
filter to update the state estimate. Its measures of effectiveness will be track
purity and misassociation. They measure the consistency with which a track is
updated with measurements from a single target or a set of targets,
respectively- and

2. Estimation. This function transforms sensor measurements into estimates of S
the target's state, usually the target's trajectory described by position, velocity,
acceleration, etc, and the target's state estimation error covariance. The
distance between the state estimate and the true state and the credibility of the
filter calculated covariance matrix measure the performance of the tracking
filter, which is affected by data misassociation'and'other errors.

The goal of the detailed scoring methods for tracking algorithm estimation and
association performance is to provide a guide or standard with which all tracking

algorithms can be evaluated. This report presents formulas a.,4d criteria for many of the
major functions in tracking adapted by the Panels.
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1. INTRODUCTION

This report undertakes to characterize the state of the practice and the state of the art
of multiple sensor, multiple target tracking algorithms in ballistic missile defense (BMD).

'Until recently, most of the Strategic Defense Initiative Organization's (SDIO) tracking

research and development focus has been on passive electrooptical sensors housed on

orbiting satellites or ground-based rockets launched into sub-orbital trajectories. These

sensors, as part of a so-called Phase 1 defense system, were to detect, measure, track, and

discriminate large numbers of missile boosters and reentry vehicles (RVs) in a full force

Soviet strategic attack as they fly from boost phase through midcourse to early reentry, in

often noisy background clutter environments, closely interspersed during portions of their
flights with many escorting decoys. For simplicity, we will refer to both of these basing
modes as satellite-based, in keeping with the sensor's location while tracking.

Ground-based radars, which have always been a part of SDIO terminal ballistic
missile defense systems, have not been critical items in Phase I tracking research and

development. The emphasis instead has been on mastering the great challenges of
conducting surveillance with sensors that generate ongles-only measurements (also known
as lines-of-sight or ceirections xo the target) and intensity measurements during boost and
midcourse, to execute intercepts as early after launch as possible. Recently, SDIO's

mission has been expanded to emphasize theater ballistic missile defense (TMD) and
defense against accidental or unauthorized strategic missile attacks in a mission known as
the Global Protection Against Limited Strikes (GPALS). Radars are critical sensors in
TMD and GPALS. SDIO tracking researrt and development efforts now need to be

focused on two issues. One is on executing the ground-based TM]D mission and on
extending the battle space of TMD systems by utilizing tracking information from sitellite-
based systems. The other is the full strategic threat and a Phase 1 defense..

1.1 INTRODUCTION TO TRACKING

A track is an estimate, based on sensor measurements, of the position and velocity
and sometimes acceleration a.ad key parameters that describe the target's trajectory and
properties, such as mass, temperature, etc. The position, velocity, acceleration, and any
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key parameters are collectively referred to as the target's state. Unless otherwise specified,

we will usually understand target state to refer to ,a target's position, velocity, and

acceleration, that is, trajectory. A 'track, then, is an estimate of the target's current and

future state derived from sensor measurements of it.

A tracking algorithm is a sequence of logical and mathematical procedures for:.

(1) associating sensor measurement data from the same target across multiple frames of

data and across multiple satellites or associating tracks of the same target across multiple

satellites; and (2) processing that data into estimates of current and future target position,
velocity, and acceleration. Association and estimation are interrelated procedures usually

based on detailed physics models for the forces governing the target's trajectory and

detailed models for the relationship between sensor measurements and the target's state.
Sensor measurement data are the inputs to a tracking algorithm; estimates of the target

trajectory are the outputs. The estimation algorithm establishes criteria by which the

association algorithm chooses subsequent measurements for subsequent data processing by

the estimation algorithm.

The two most important data processing algorithms that transform sensor
measurement data into trajectory estimates are Kalman filters and least square filters.

A Kalman filter is an algorithm that, based on models for target dynamics and sensor

measurements, generates a state estimate and state estimation error covariance at the current
time using all the sensor measurement data to that time. The estimate and its error are
updated each time subsequent measurement data become available, in what is referred to as
recursive or sequential processing. The filter also predicts future values for the state

estimate and state estimation error covariance without further data. Kalman filters are an
optimum method for processing the data according to the statistical n. asure of optimality
known as minimum mean square error. In contrast, the least squares filter, in what is
referred to as batch processing, simultaneously processes an assembly (time sequence) of

data to produce a state estimate and estimation error covariance at a time during the
observation interval. The least squares filter is optimum according to the criterion of

minimizing the squared errors between the sensor measurement data and a model for the

target motion that produced that data.

A passive electrooptical observation measures azimuth and elevation and cannot
measure range to a target. Azirmuth and elevation define a line-of-sight vector that describes
the direction to a target from the sensor. A target's position with respect to the sensor is
specified by the product of range and line-of-sight vector.
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In passive electrooptical sensors, tracks are either focal plane tracks or full state

tracks. A focal plane track typically uses a Kalman filter to estimate a target's trajectory

across the focal plane without explicitly modeling its dynamics in three dimensions. The

sensor's azimuth and elevation sensor measurement data are used to estimate the current

and future azimuth and elevation position, velocity, and acceleration. Range and its

derivatives are neither measured nor estimated.

In single satellite passive electrooptical tracking algorithm approaches, focal plane

tracking would be followed by an initial trajectory/orbit determination algorithm. This is

-often, but not always, a least squares filter to batch process the entire time sequence of

• azimuth-elevation measurements in a focal plane track. In general, initial trajectory/orbit

determination algorithms transform the essentially two-dimensional angles-only

information of a focal plane track (azimuth and elevation') into initial three-dimensional

information on the full state, which can initialize a full state Kalman filter. Based on

* models describing a target's three-dimensional dynamics and the sensor measurement

process, the full state Kalman filter maintains estimates for three-dimensional position,

velocity, and acceleration, alternatively updating estimates at the time each new sensor

measurement data become available with predicting estimates ahead to future times.

* If another satellite is available and observes the same surveillance region, its
azir'uth-elevation measurement data can be associated and combined with the first

satellite's angles-only meatsurement data to produce range measurements to the targets by

triangulation. One satellite's focal plane tracks can similarly be associated and combined

* with those of another satellite to produce range data. Stereo data processing would then

fol:Zpw.

Stereo data processing algorithms for fused line-of-sight data come in two general

types. One type implements an initial trajectory/orbit determinatior, algorithm, different in

4P detail from the angles-only algorithms in the single satellite case, but with the same goal: to

deternine the three-dimensional trajectory information not directly available in the

mTas1rewent data. namely, three-dimensional velocity and acceleration. Three-dimensional

tra&ks would then be maintained by a Kalman filter, either in place of the individual
0 satellite'!. focalfplane tracks or in addition to them.

The other type of stereo data processing algorithm obviates dynamical modeling

requirements by assembling a time sequence of three-dimensional target positions from
0 contiruaily fused focal plane tracks maintained by the stereo partner satellites. Three-

1-3

/
/

/
/



dimensional target velocity at each time is computed by interpolation and numerical
differentiation of the positions.

A major activity in all tracking algorithms, single satellite as well as multiple

satellite, is the association of a single frame of observation data to tracks. Often the first

step in association is to eliminate unlikely observation-track pairings in a process known as

gating. A gate is a region in the sensor's field of view determined by the Kalman filter

where the subsequent measurement originating with a target being tracked is likely to fall.

In order to be associated with a particular track, it is necessary but not sufficient for an

observation to fall within the gate for that track. Observations from other targets, false

alarms, or clutter may also fall within the gate or t he target may not have been detected

within the gate. When there is more than one observation in a gate or an observation

simultaneously falls in more than one gate, there is uncertain association of observations

and tracks.

In general, the association problem is one of the most computationally intensiveand

critical aspects of tracking, particularly in dense observation environments. Incorrect

observation-to-track association can lead to: poor track performance, that is, a large

difference between estimated and true target trajectories; loss of track as the filter follows an

incorrect sequence of observations; and tracking errors far worse in reality than those

predicted by the Kalman filter. High tracking precision mitigates the association problem
by generating smaller gates. Errors incurred during multiple satellite observation and focal
plane track association also have very serious effects on performance. These associations

are greatly complicated by multiple intersections of lines of sight (ghosting) or non-
intersecting lines of sight.

Data association is the most critical challenge in Phase I in the dense observation

environment arising from clutter, false alarms, and multiple targets. With declining threat

severity, from Phase 1 to GPALS to TMD, data association becomes less of a concern in

midcourse but by no means does it become of no concern. Data association almost
certainly remains a Critical issue in boost-phase tracking.

Filter design, modeling, and numerical implementation in order to achieve good

performance, credibility, and reliability, when challenged by complex target dynamics, by

difficult data association, or by limited sensor information are critical issues that span

Phase 1, GPALS, and TMD. For single satellite tracking of boosters in powered flight,

clever modeling and design are necessary to track these very dynamic targets in a probably
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dense observation environment arising from clutter and false alarms using the limited

sensor information afforded by angles-only observations.

One innovative approach to managing the high density Phase 1 threat, particularly

during early midcourse, is to forgo tracking individual objects and instead to track closely

spaced observations as a group or cluster in terms of the cluster mean and extent. Clever
0 modeling was required to devise a filter to track the cluster extent. Cluster tracking raises

many issues, not the least of which is that since individual target tracks are ultimately what
is required, when is cluster tracking performed rather than indiv; ',- target tracking and
vice versa? Also, when and how is the transition bet'. -i clu-, 'd individual object

* tracking accomplished?

1.2 INTRODUCTION TO THIS REPORT

This report is divided into two parts, with Pr,-•L A - su.n. 4Or program managers
and defense decision makers to provide them a sense of where things stand regarding:

* How many targets can be tracked, how well, and iB what densities and
scenarios?

* In computer simulatirons to date, how many targets have been tracked, how
• well, and in what densities and scenarios?

* By what criteria should computer simulations be judged?

* Where is additional work required and what are the critical issues in algorithm
development, simulation, and evaluation?

Towards this end, Part I consists of a survey, including the state of several critical
issues in tracking algorithm development:

* Data Association

* Cluster Tracking

* Tracking Simulation

* The Surveillance Testbed (STB).

Tracking simulations measure computational performance (speed and memory) and
P tracking performance (estimation and association performance measures such as estimation

accuracy, credibility, and reliability and track purity). As a practical matter, many
simulations emphasize one aspect over the other. Simulations with larger and more dense
threats are more often used to investigate 'computational performance because the data

Sassociation algorithm and tracking filter design, implementation, and experimentation are
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compromised by insufficient computational resources. Those data association algorithms

and tracking filters are selected more for their computatiunal thriftiness then for their

tracking performance. High observation density indicates the level of ambitiousness and
complexity in the simulation, determines the adequacy of computer resources, and must be
considered in the measurement of the level of difficulty and in the judgement of the quality

of tracking performance.

The Surveillance Testbed is critical to SDIO. The STB will be the SDIO facility
where contractors can with a minimum of modification run their own software in high
fidelity, high detail surveillance simulations to verify detection, tracking, discrimination,

and sensor tasking. A contractor's algorithms can be tested by themselves on the STB as
well as 'in their role in a complete surveillance system by inserting them into a
complementary set of "house algorithms," algorithms maintained on the STB. With SDIO
approved threat scenarios, and SDIO supplied signal generation and sensor and signal
processing data that are the inputs to the surveillance algorithms, critical algorithm
experimentation and evaluation can take place in a controlled environment and scored
according to standardized methods, thereby facilitating performance comparisons. By
having the STB supply the inputs that drive high.-fidelity, high-detail simuiations, SDIO
saves the resources otherwise spent when each contractor develops their own extensive
simulation drivers.

The SDI Tracking Panels have played a critical role in the development of the STB.
Before the STB program was started the members of the Tracking Panels, representing
tracking algorithm designers from across government, FFRDCs, contractors, and academe,
called for an algorithm testbed of this sort. A testbed on which experimentation could be
performed and high-detail, high-fidelity threat scenarios complete with sensor measurement
data could be produced and supplied to contractors for use in their own testbeds. During
the development of the STB, the Panels provided a peer review of the STB development
plans and supplied the input of the intended user community. The Panels deserve credit for
helping to shape the STB into a facility that should well serve SDIO and its contractor

community.

Part II of this report contains discussions of some remaining problems pertaining to
the design and utilization of tracking algorithms:

* Birth-to-Death Tracking

* Booster Tracking and Template Matching
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* Midcourse Track Initiation

• Scoring Methods for Track Performance.

In a fully integrated ballistic missile defense surveillance system, tracks would be

disseminated and fused throughout the various battle managers and sensor elements: boost

phase surveillance sensors, space-based and ground-based space surveillance sensors, and

terminal phase sensors. Ballistic missile defense birth-to-death tracking is the concept of

maintaining continuous tracks on targets from launch through to impact by fusing tracks

across sensor elements. Birth-to-death tracking schemes range from the grand to the

temperate.

In the grandest design of birth-to-death tracking, downstream narrow field-of-view

sensors that lack adequate independent search capability are enabled by pointing directions

from upstream sensors. Additionally, downstream sensors initialize tracks by relying

entirely on, upstream track hand-overs. Boost-phase tracks would be handed over to the

post-boost and midcourse surveillance sensors for continuation: booster burnout position
and velocity would initialize the post-boost vehicle (PBV) track. Narrow field-of-view

optical midcourse sensors would be directed where to look for the PBV rather than
independently searching. Ground-based radars would also be cued where to look for
midcourse and re-entering objects to gain increased detection ranges. As the PBV

dispenses reentry vehicles (RVs) and decoys, tracks for each would be established by
spawning new tracks from the continuing PBV track. Every object in the midcourse then

could be traced back to its origin, PBV and booster, and a track for each established

essentially by continuation of booster tracks. There would never be need during midcourse

for the "cold start" track initiation procedures of assembly of a sequence of measurements

for initial orbit determination data processing. All midcourse tracks would be initialized by
"warm start" track initiation: hand-over of track data from upstream sensor elements and

spawning new tracks from existing tracks.

Birth-to-death tracking in its grandest design is logical and efficient. It possesses
the virtues of omniscient accounting of threat objects, enabling of relatively inexpensive
narrow field-of-view optical sensors, and avoidance of the immense computational expense

ane complication of cold start.track initiation. But it counts on the existence of a seamless
link across sensor elements, in which upstream track information is available exactly when

and where it is needed. Such a link is ambitious, perhaps even feasible. But a surveillance

system that is entirely reliant upon it is critically susceptible to catastrophic failure.
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Temperate birth-to-death tracking schemes cue downstream sensors to assist (rather

than enable) relatively narrow field-of-view optical sensors, to increase the battle space of

ground-based BMD systems, and to avoid cold start track initiation but only if and when 0

upstream track hand-overs are available. Hand-over tracks are not considered to supplant

an independent operational capability for each individual sensor or individual sensor

element.

Ultimately, it is a question of capability versus robustness against catastrophic

failure. Each sensor element and each individual sensor must be capable of searching a

reasonable surveillance region and performing cold start track initiation to reduce

vulnerability and to constitute a system that works in a world of communications delays

and misdirections and the unexpected. But, only if adequate capability is achievable or

affordable in individual sensors or sensor elements.

Boost-phase tracking experience to date is limited. What can be performed well is

the tracking of a small number of targets across the focal plane (focal plane tracking) of a 0

passive electrooptical sensor on-board geostationary satellites without explicitly modeling

the boosters' detailed three-dimensional dynamics or explicitly tracking the boosters' three-

dimensional trajectory. Historical averages and a priori assumptions for booster altitude

versus ground range flight profiles and intensity versus time profiles, known as templates, 0

are used to estimate launch locations, times, and azimuths, and to identify missile types.

But with regards to using focal plane tracks and templates to predict future states in post-

boost, midcourse, and reentry, the accuracy required foi BMD has not yet been

demonstrated. Brilliant Pebble booster tracking of a particular sort has been demonstrated •

in limited simulations with low fidelity data and without clutter. Extensive simulations that

demonstrate convincingly the tracking accuracy required for booster surveillance, good
weapon-to-target assignment, and good pebble guidance performance remain to be done.

In this report we review critical issues in, and methods of, booster tracking and template •

matching.

Single satellite angles-only track initiation in the dense observation environments of

Phase 1, and perhaps GPALS, is a critical issue. The issues in ballistic missile defense are

first the ability, in a dense observation environment, to assemble a reasonably small 0

number of 'credible time sequences of angles-only measurements without being able to use

models for the detailed three-dimensional motion of the targets. The other issue is the

reliability of the initial trajectory/orbit determination algorithms and the accuracy, precision,

and credibility of their initial state estimates and estimation errors. Low precision state 0
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estimation errors will lead to greatly complicated data association problems for track
maintenance in dense observation environments. The critical issue is to gain high enough
precision- estimation errors to mitigate data association problems. We know of no
simulations where these issues are thoroughly examined. In this report we discuss in detail
approaches to track initiation, booster initial trajectory determination, and to midcourse

initial orbit determination.

Ultimately, the performance of tracking algorithms is judged by the success, or
failum., of the mission they support. The destruction of a target by an interceptor guided, in
part, by tracking information provides one vivid, obvious measure of success. But, what
if the initerceptor missed? Did the tracking algorithm perform poorly, or the guidance

algorithm, or the sensor and signal processing, or the rocket motor?

Scoring tracking algorithm estimiation and association performance has also been a
major issue in SDI simulations. Succinctly, in a dense observation environment, where the
track is' made up of observations from many targets, it is non-trivial to decide on the
association between tracks and with the true target states that produced those observations.
In this report, a method is proposed to associate tracks with true target states. This method
was first developed by a member of the Tracking Panels and augmented and adapted by the
Panels. After making the association of track to truth, there remains the issue of standard
scoring computations and criteria. We derive detailed scoring methods for tracking
algorithm estimation and association performance. The goal is to provide a guide or
standard with which all tracking algorithms can be evaluated. This report presents
formulas and criteria for many of the major functions in tracking adapted by the, Panels.
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PART I

SURVEY OF PROGRESS IN SOME KEY
TRACKING TECHNOLOGIES



2. SURVEY OF DATA ASSOCIATION ALGORITHMS

Data association, also referred to as data correlation, is the decision process of
linking observations and tracks from the same target. We will use the term data association
for what is often referred to as scan-to-scan correlation. In general, the association could

be sensor observations to sensor observations, either near simultaneous observations from
multiple sensors or a time sequence of observations from a single sensor. The association

could be tracks to tracks from multiple sensors. And the association could also be
observations to tracks for one sensor operating independently. Scan-to-scan may imply

that the problem is restricted to linking observations with observations.

While, association and correlation are synonymous the latter also refers to a specific
mathematical quantity or operation. It is useful to point out that the mathematical

correlation operator plays no role in establishing links in multiple' sensor, multiple target
tracking. Finally, to be consistent with strict usage, we will use the term frame insteadof
scan where a frame is defined as one data collection survey of the surveillance region.
With this definition frame is independent of whether the sensor surveils by mechanically
sweeping the field of view with detectors or surveils electronically with staring detectors.

Data association is very challenging in a dense observation environment arising
from clutter, false alarms, and multiple targets and observations arising from unresolved
closely spaced objects (CSOs). The sensor's ability to resolve closely spaced objects
depends on the properties of the optics and focal plane, the sensor signl processing, and
the range and viewing geometry to the targets. An observation from a group of
unresolvable closely spaced objects (CSOs) may appear identical to the observation for a
single object. A CSO may also appear as a relatively large (compared to the signal from
individual objects) clump on the sensor's detectors in what is referred to as an extended

object.

High observation density is the single most defining characteristic of SDI tracking

problems, particularly for Phase I defense systems. It is the determinitive factor in the
selection, implementation, and complexity of data association algorithms. For Phase I
defense whether good tracking performance can be, accomplished at affordable, or for that
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matter achievable, computational expense remains an open question. For TMD and

GPALS data association will be less challenging, but, depending on the scenario, will not

necessarily be no challenge,

This chapter, an abbreviated, updated version of similar material in last year's

survey, provides a review of the three classes of data association algorithms: assignment,

probability data association, and multiple hypothesis.1 The distinguishing characteristic

separating these approaches is the manner in which data association decisions are made.

We will also briefly mention some exciting advanced concepts: Fuzzy Sets and Conditional

Event Algebras.

2.1 DATA ASSOCIATION ALGORITHMS

The fundamental multiple sensor, multiple target data association dilemma is the

decision on the origin of observations and tracks in the association of observations to

observations, observati as to tracks, or tracks to tracks. For instance, an observation

could be from the individual target of interest, from other targets, from an unresolved CSO,

or clutter or false alarm.

There are three fundamental classes of data association algorithms. Assignment
algorithms make a definitive decision on the origin of the data at each decision time. No

alternative hypotheses are carried into the future to await the assistance of new data in
sorting out the truth. Instead of deciding which particular datum to associate, the
probabilistic data association (PDA) algorithms average over all feasible associations.

Multiple hypotheses algorithms defer a decision on the origin of the data. All viable
alternatives are retained as distinct possibilities until later information decides the correct
data association. For each class, there are several key concepts, which are summarized in

Table S-I and explained below.

Assignment and multiple hypotheses algorithms have received the most

consideration in BMD. In general, assignment data association algorithms should be

computationally affordable but may not provide the' necessary tracking performance.
Multiple hypothesis algorithms, on the other hand, should provide superior performance

but their computational requirements may not be affordable.

For a more in-depth review see Survey of Strategic Defense Initiative Algorithms, Gabriel Frenkel and
Barry Fridling, Institute for Defense Analyses, IDA Paper P-2284, November 1989.
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Table 2-1. Data Association Algorithms

Type Feature Explanation

Assignment Coordination Assignment can be performed on each track
independently of all other tracks (locally) or on all the
tracks simultaneously in a coordinated fashion (globally).

Dimension Assignment can be performed on two data lists, such as
one set of tracks and the new frame of observatio~ns, or
more than two data lists such as one set of tracks and'
multiple frames of data.

Number Assignment is usually unique, such as one observation
to one track, but can also be multiple, such as multiple
observations to one track or vice versa.

Probabilistic Data Dimension Tracks are updated by an average over all feasibly
Association associated observations from one or more frames of

data.

Multiple Hypotheses Splitting Create additional tracks for each feasibly associated
obeervation.

Observation- Consider each observation in turn as originating
oriented from a new target or a feasibly associated existing track.,

2. 1.1. ASSIGNMENT ALGORITHMS

Nearest neighbor assignment algorithms associate the closest data as calculated by

some distance function. For instance, a-track would be assigned the nearest observation as

calcu!~ted by the distance from the track to the measurement.

One approach to single sensor multiple target tracking is to implement a nearest

neighbor algorithm for each track independently of all other tracks. T7his is referred to as
uncoordinated or local nearest neighbor. A track would then decide whether to update with
an observation independent of how another track updates regardless of competing claims
for the observation.

This is ursatisfactory for the reason that associations over multiple targets are
interdependent: the association of an observation that simultaneously lands within the gates

of more than one track with a particular track denies that observation to the remaining
contending tracks. Unique associations are often required in order to ensure statistical
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independence of the tracks, which considerably simplifies the tracking algorithm

mathematics.

Nearest neighbor assignment algorithms should be executed in a coordinated or

global manner as follows. A cost matrix is defined for all possible observation to track

associations, including that the observations are from a new source (target, clutter, or false

signal), and for all track to observation associations, including the case that the correct track

observation is not feasible or was not detected. The matrix entries or scores are the

probabilities of the associations or their logarithms. In Kalman filter tracking, these are the

exponential of minus one-half of the normalized distance between the measurement and

track in O'e association pair. (Other factors can be included in the scores, such as the

probability of detection, the probability of finding the measurement associated with the

target within the gate, the probability that the observation is from a new source, and the

probability of choosing no observation for association with the track.) An algorithm, such

as the Munkres algorithm, is executed to assign observations to tracks in a coordinated

fashion by maximizing the sum of matrix entries subject to the constraints that no track is

updated by more than one observation and one observation is not assigned to more than

one track. Maximizing the entries minimizes the total distance between measurements and
tracks. The result of such an algorithm is a unique pairing of tracks to observations.

Assignment algorithms usually associate items on two data sets, for instance, a set
of observations with a set of tracks. They can also associate two sets of observations or
two sets of tracks. Assignment algorithms for two data sets are often described as two-

dimensional.

Research and development of assignment algorithms is advancing rapidly. A recent

report2 described an optimal two-dimensional assignment algorithm that is claimed to be

substantially faster than even the fastest version of the sparse Munkres algorithm.

Assignment algorithms have been developed that can associate data among more
than two data sets, for instance linking several frames worth of observations to tracks. In
this manner, multiple dimension assignment algorithms are generating multiple hypotheses

in the sense that more than one viable alternative is retained over a number of scans. A
hard assignment, that is, decision, is then made after some fixed interval.

2 "Comparison of 2-D Assignment Algorithms for Sparse, Rectangu~ur, Floating Point, Cost Matrices,"
O.E. Drummond, D.A. Castanon, and M.S. Bellovin, in the Journal of the SDI Panels on Tracking, the'
Proceedings of the SDI Panels on Trackinac, Issue No. 4/1990, pp. 4-81 to 4-97.
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Assignment algorithms are also being developed to make non-unique associations,
assigning one track to two observations or two tracks to one observation. These are
referred to as multiple assignment algorithms.

Aiphatech Corporation has contributed greatly to the development of assignment
algorithms, both multi-dimensional and multiple assignment. Aiphatech, in part under
work funded by the Algorithn- Architecture Program of the U.S. Army Strategic Defense
Command, has explored the performance of many innovative, advanced assignment
algorithms on various computer architectures. This work is of great importance.

2.1.2 Probabilistic Data Association Algorithms

Probabilistic data association (PDA) applies to a single track and is strictly a method
for handling the problem of multiple feasible observations with an established track. The
fundamental ideas are to average over the latest set of all feasible observations and to utilize
the association probabilities of the observations to the track.

In the PD 'A, each feasibly associated observation is considered as originating with
the target. Also the case that the observation originating with the target is not detected or is
not considered feasible is given consideration. An association hypothesis is constructed
consisting of associating one observation (or none) to the track and considering all others
as statistically independent clutter or false alarms.

The PDA procedure is first 'to multiply the probability of each association
hypothesis with the updated state estimate that assumes that hypothesis is true. Then a
composite PDA state estimate is formed as the sum over each of these products. This
forms a weighted average of the state estimates for each feasible data association
hypothesis.

The joint probabilistic data association (JPDA) algorithm extends the PDA to
multiple targets by computing the association probabilities jointly across tracks rather than
for each individual track. The state estimate is calculated as before as an average ovet the
state estimates for each association hypotheses weighted by the probability for that
hypothesis.

The four principal, distinguishing characteristics of the PDA approaches are the
assignment of many observations to one track, the exploitation of association probabilities,
the calculation of state estimates as averages over association hypotheses, and a lack of
organic track initiation logic.
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The association probal ilities are calculated with Bayes Theorem from Probability

Theory. For this reason, PDA algorithms are one member of a class of tracking

approaches referred to as Bayesian Tracking Algorithms. An Optimal Bayesian Tracking

algorithm would extend the association hypotheses over many frames rather than just the

most recent.

Bar-Shalom and Fortmann3 have extended the PDA single scan algorithm to an

optimal-Bayesian algorithm. Consider a time sequence of observations, one observation
from each frame from the initial to the present time. Such a sequence forms one possible

target history, that is, one possible track. Consider all possible such sequences. The set of
all possible associations at the current scan can be decomposed into tracks at the previous

frame associated with some observation from the current frame.

An association probability for each observation sequence, that, is, a probability for
each track, can be calculated conditioned on the entire set of observations. As in PDA, the.

conditional probability for each hypothesis multiplied by the state estimate that assumes that
hypothesis is true is summed over all possible hypotheses. Thus, the updated state
estimate for a track is an average over the different possible association hypotheses./

Since optimal Bayesian algorithms associate over all scans, not just the most recent,
the computational expense is prohibitive. A suboptimal approach looks back N frames,
referred to as N-backscan, rather than all the way to the initial frame. The original PDA is
the zero-backscan suboptimal version.

2.1.3 Multiple Hypotheses Algorithms

An intuitive approach to managing multiple feasible observation to track

associations is to split the original track into many tracks, one for each feasibly associated
observation. This process is known as track splitting. Each track is updated with the
associated observation and carried forward to the next scan in the standard fashion. In this
manner, difficult association decisions are deferred until more information becomes

available.'

A track splitting algorithm has two limitations. First, it has no organic track
initiation logic: Observations not feasibly associated with existing tracks are not addressed.
The second and most significant limitation of the track splitting algorithm is that

3 Yaakov Bar-Shalom and Thomas E. Fortmann, Tracking and Data Association, Academic Press. Inc.,

Orlando, Florida (1988).

2-6



0

observation association with multiple tracks is performed in an uncoordinated manner.

There is no conflict resolution logic that manages the problem of one observation that may

be feasibly associated with multiple tracks.

Deferring difficult data association decisions is archetypical of multiple hypotheses

algorithms. In contradistinction to track splitting, other multiple hypotheses algorithms

tend to make use of association probabilities like those in the PDA algorithms.

Reid's 4 , multiple hypothesis algorithm remedies the absence of organic track

"initiation logic by generating observation-oriented hypotheses. A track-oriented hypothesis

is where every observation is considered for association with each track from the previous

* scan. No observation is considered for association with a track that did not exist on the

previous scan, that is, a new target. This is the reason for the absence of organic track

initation logic. In observation-oriented hypotheses, each observation is considered as

clutter or a false alarm, as a feasible continuation of a previous track, or as a new target.

Consider the hypotheses generated on the previous frame and the first observation

of the new frame. Generate a new hypothesis for each feasible association of this

S. observation: as clutter or a false alarm, as a feasible continuation of a previous track, or as

a new target. Take this new set of hypotheses and repeat this procedure with the second

• observation except that more than one observation cannot be associated to one track.

Continue in this way until every current observation has been associated. Reid referred to

these as cluster hypotheses.

While the total number of cluster hypotheses generated can be quite large, the

number of track-to-observation associations is relatively few, equal to the sum over cach

track of the number of observations with which it is feasibly associated plus one. This

point is important in reducing the number of computations. One track-to-observation

association can appear in many different cluster hypotheses. Each association decision is

followed by a tracking filter update computation. If the track update computations were

performed for each cluster hypothesis then the same filter update computation would be

repeated many times. Instead, tracking filter update computations are performed for each

feasible association, association probabilities are calculated over alternative hypotheses, and

then these are mapped onto the larger set of cluster hypotheses. It must be reemphasized

4 Donald B. Reid, "An Algorithm for Tracking Multiple Targets," IEEE Trans. Ato. Control, Vol. AC-
24, No. 6, December 1979, pp. 843-854.
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that each association hypothesis assumes unique observation-track associations so that the

association probabilities are calculated over statistically independent states.

The optimal implementation of Reid's algorithm would require ever-increasing

computer memory as more hypotheses are generated on each frame. All practical versions

limit the number of hypotheses. One way to do this is to divide the set of tracks and

observations into independent groups requiring conflict resolution. The growth of

hypotheses is also limited by the operations of pruning and merging. Hypotheses

considered unlikely, say those below some threshold, are dropped while those that are
"similar" according to some criteria are combined. These operations are suggestive of track

splitting but in that case there were no association probabilities and there were multiple

assignments of tracks to observations.

One limitation of Reid's algorithm is that it does not include multiple associations of
tracks to observations, such as may occur in merged measurements, or multiple

associations of observations to tracks, such as may occur in track spawning. The
fundamental reason for this is the manner in which the association probabilities are
calculated. One hypothesis consists of a set of unique associations. The probability of the
association hypothesis decomposes into the products of probabilities for the individual
components when the states are statistically independent as ensured by unique associations. 6

Kovacich of Lockheed Missiles and Space Company has described a Bayesian
multiple hypotheses tracking algorithm that remedies these defects in Reid's approach.5

The key idea is to use a Bayesian network architecture (also known ar influence diagrams)

to provide a calculus to represent and manipulate joint probability distributions such as
those that occur in multiple target tracking. Rather than decompose the association-to-track

'problem into unique association hypotheses, the fundamental unit in Lockheed's approach
is the scene which is defined as the joint set of observation-oriented hypotheses, track-
oriented hypotheses, and track spawning outcomes for different clusters. The probability
for each individual possible outcome is calculated by the Bayesian network. This research

is of great importance.

5 Michael Kovacich, "Application of Bayesian Networks to Midcourse Multi-Target Tracking,"
Proceedings of the SDI Panels in Tracking, Issue No. 4/1989, pp. 4-56 to 4-143.
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2.2 ADVANCED CONCEPTS

Fuzzy Sets and Conditional Event Algebras are two of the most interesting
advanced concepts under investigation for data association and tracking problems. Fuzzy
Set Theory is a significant departure from standard probability theory that could be applied
to problems in decisions (data association) and estimation (tracking filters). The
fundamental idea is to generalize the classical or crisp set in which membership is
dichotomous: an e'leinent either is or is not a member of the set. Fuzzy sets eliminate the
sharp, boundary dividing members and nonmembers by assigning to each element a value
or grade corresponding to the degree of membership in the set.

There is a great deal of controversy surrounding Fuzzy Set Theory, Fuzzy Logic,
and Fuzzy Control, including:

* Is it good mathematics?

* If it is good mathematics, then does it lead to new insights or methods?

* If it is good mathematics, then is it necessary to master Fuzzy Set formalism to
derive the new insights or methods?6

Most of the interesting applications to date have been in Fuzzy Control and Fuzzy
Signal Processing. We are closely monitoring the application of F~uzzy Set Theory to data
association and tracking problems.

I.R. Goodman, of the Naval Ocean Systems Center, and collaborators have
.developt4d a new approach to the data association and tracking problem known as
Conditional event algebras. Essentially, the idea is to create new mathematics for
manipulating conditioned random variables and processes. The goal is to develop better
mathematics for reasoning based on evidence which would be more appropriate to data
association and tracking problems.

6 For one view of all this see "Bayecsian vs. Fuzzy Theory," Fred Dawrn, Proceedings of the SDI Panels on
Tracking, No. 1, 1591.
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3. SURVEY OF RECENT TRACKING SIMULATIONS

This chapter surveys three recent tracking simulations that represent the most

impressive efforts to date in the community that have been published and with which we

are familiar enough to be able to evaluate. For reasons that include competitiveness, not all

simulation results are published. These simulations are representative of the simulations

that have been pubiished and are representative of the state of the practice in the SDI

tracking community.

Observation density is also the single most defining characteristic in SDI tracking

simulations, particularly Phase 1 simulations. Tracking simulations measure computational

performance (speed and memory) and tracking performance (estimation and association

performance measures such as estimation accuracy, credibility, and reliability and track

purity). As a practical matter, many simulations emphasize one aspect over the other.

Simulations with larger and more dense threats are more often used to investigate
computational performance because the data association algorithm and tracking filter

design, implementation, and experimentation are compromised by insufficient
computational resources. Those data association algorithms and tracking filters are selected
more for their computational thriftiness than for their tracking performance. High

observation density indicates the level of ambitiousness and complexity in the simulation,

determines the adequacy ofcomputer resources, and must be considered in the

measurement of the level of difficulty and in the judgement of the quality of tracking

performance.

* pWhen one considers tracking simulations four issues should be kept in mind:

• How challenging is the threat being tracked? Tracking simulations can be

likened to diving and ice skating competitions, for instance, in the sense that performance

must be evaluated in part by the level of difficulty of the effort.

* What are the important assumptions and initial conditions? This is something

of an extension to assessing the level of challenge of the threat. There are several key

concerns: To what extent are clutter and background effcts included and how are they
modeled? What is assumed for sensor properties such as resolution and accuracy? How is
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the sensor and signal processing modeled? Is sensor tasking scripted in advance or
performed on-line? Are data misassociations permitted? Start up conditions can grossly
affect tracking performance. For midcourse simulations the key issue concerns how
midcourse tracks are initiated: Does the simulation rely on tracks handed over from boost
phase and if so how good are those track hand-overs?

* What are the key algorithm details? It is important to know some detail of the
algorithms and algorithm architecture to appreciate the context of the work.

* What are the scoring methods and measures of effectiveness? How are tracks
associated with true targets for evaluation?

3.1 ADVANCED SYSTEMS ARCHITECTURES

Advanced Systems Architectures of the United Kingdom, under contract to SDIO,
has investigated the performance of their algorithm against the unclassified 460 object Test
Case I of the SDI Panels on Tracking. Their algorithm, referred to as The Target-Oriented I
Approach to Data Fusion, was described in detail in last year's survey. This description of
their work is based, on an ASA report' and on a presentation to the Panels, which can be
found in the Proceedings. 2

They considered tracks for only those 380 objects which were continuously visible
throughout the scenario. One track for each of these 380 objects was initiated by very
optimistic hand-over information: one second before the scenario begins, diagonal
covariance matrices are formed with 7 meters position error and .025 meters/second
velocity error. Cluster tracks for centroid and extent were initiated with the values
corresponding to the cluster's true members individual object track values. We consider
this to be unrealistic.

A key algorithm detail is the philosophy of their approach, which is to perform
individual object and cluster tracking with processes operating as concurrently as possible.
This was a significant factor in the selection, implementation, and investigation of the data
association algorithm. A global nearest neighbor assignment of observations to tracks was
rejected in favor of a local nearest neighbor assignment in order to maintain insofar as
possible the concurrence of the track processes. It was unclear from the information

1 Simulation and Demonstration of the Target Oriented Sensor Data Fusion/Tracking Algorithm for the
SDI Mid-Course, Final Report, ASA REF: T90/007, 30 September 1990. Edward Goodchild.

2 Proceedings of the SD! Panels on Tracking. Issue No. 4/1990, pp. 1-131 to 1-167.
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available to us what was done with extra observations, if there were any from one frame's

data, that were feasibly associated with a track.

Track to truth association was accomplished via a target-oriented local nearest

neighbor assignment: For each true target state considered independently of all others, the
track nearest to it was assigned for purposes of evaluation. The measures of performance

I were the magnitude of position error and velocity error, for both the individual object tracks

and the cluster tracks.

Various computers were used to investigate different computer architectures,

including Alliant FX 80, Alliant FX 2800, MIPS M 120-5, and a Cray Y-MP.
It

3.2 *ALPHATECH

Alphatech in the Algorithm Architecture Program3 analyzed portions of the
unclassified Test Case 2 of the SDI Panels on Tracking consisting of 750 objects and

• portions of an unclassified 6,260 object threat case provided by Albert Perrella from IDA

using the SAAM software package. Key assumptions and start-up conditions were
20 microradian sensor measurement accuracy and 100 microradian sensor resolution and
hand-over track accuracy of either 200 meters and 20 meters/second on some objects in the

* threat, not necessarily the booster or post-boost vehicle, or 350 meters and 4 meters/
second. We consider these start-up conditions to be unrealistic. Alphatech is moving,
however, to incorporate into their simulations cold start initial orbit determination
algorithms. The computers used were SOLBOURNE, DAP 510 & 610, and ALLIANT

IN FX/8.

In one simulation, 50 objects from the 750 object case were used to compare multi-
dimensional assignment algorithms, including:

* Multi-dimensional maximal marginal return (,M3R)

* Backtracking (from AT&T)

* Branch and bound.

In a second simulation, the threat was 125 objects from the unclassified 750 object
F case, consisting of one booster delivering one post-boost vehicle, with three reentry

3 Algorithm Architecture Program Subsystem Requirements Review, 22-23 August 1990, Prepared for the
* Department of the Army, U.S. Army Strategic Defense Command, and Interim Progress Review,

15-16 May 1991.
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vehicles, and six cannisters dispensing 114 balloons. The goal was to compare the

tracking performance of two different assignment algorithms: maximal marginal return

(MMR), which is a two-dimensional version of M3R, versus multiple assignment. In the 0

MMR case, unassigned observations were used to spawn new tracks using the nearest

tracks, in a version of track splitting. One measure of performance was average three-
dimensional position error as determined by unique assignment of tracks to targets based
on minimizing the sum of three-dimensional position errors. 0

A third simulation, driven by the portions of the unclassified 6,260 object case,

experimented with various computer architectures and parallelization. The measure of

performance was computer processing time. The goalwas to process one frame's worth of

data in 10 seconds or less, which is considered one nominal frame time. No tracking

accuracy performance, scores were considered.

3.3 FULL-THREAT CLOSED-LOOP SURVEILLANCE ALGORITHM
EXPERIMENTS AT THE NATIONAL TESTBED

Larry Stalla of the National Testbed (NTB) Integration Contracting Team conducted
the most ambitious and impressive SDI tracking simulation to date with which we are
familiar. His results were briefed to the SDI Panels on Tracking and, absent the classified
data, can be found in the Proceedings.4 Stalla used the test environment and test articles
integrated into the Version 2.3 Simulator by the NTB Integration Contractor, at NTB Joint

Program Office--Simulation Directorate (NTBJPO/SD) direction between September 1988
and November 1990. The primary objective of Stalla's experiment was to'demonstrate a
capability to simulate a launch-to-impact scenario, so called end-to-end, using a complete
suite of test articles in a simulation environment of realistic full-scale threats and sensor

performance. A secondary objective was to characterize the performance of the test

articles.

Stalla conducted an experiment for each of four levels of classified threat: the full

design-to-threat DIT-1; the full phase-one threat scenario POTS-3A; the DTI"-1 threat with
decoys removed, and the DlT-lI threat with decoys removed and perfect sensor resolution

assumed. Each experiment was run three times:

4 Proceedings of the SD! Panels on Tracking, Issue No. 1/1991, pp. 3-123 to 3-159. 0
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* The baseline run in which the full set of data association, tracking (state
eflmation or filtering), and sensor tasking algorithms were implemented as an
integrated suite, in a "closed-loop;"

* A run in which the data association algorithms were not implemented, instead
data association was performed essentially perfectly based on true object
identification; and

0 A run in which in addition to perfect data association, tracking was performed
using true target state information, leaving sensor tasking as the only actual test
article.

Because of the scale and scope of the experiments, we will not in this limited space
attempt to describe the details of the algorithms that were implemented as test articles.
Suffice it to say that cold and warm start track initiation algorithms and track maintenance
algorithms were integrated. Hand-overs between sensor elements were simulated,
including boost-phase to midcourse (BSTS to SSTS), space-based midcourse sensors to
ground-based probes (SSTS to GSTS) launched based on the information in the run (both
track estimates and target truths). Various assignment algorithms apparently were used for
data association.

Stalla's measures of performance included the number of kills and misses by the
Ground-Based Interceptor (GBI); the fraction of total GBI divert capacity used per divert;
unnormalized track position error distribution for each sensor system; and the constellation
coverage efficiency in terms of the number of object sighting messages (OSMs) reported
from each sensor platform., T!here was also a score for data association accuracy.
Classification limitations prevent discussion of the results here.

Stalla's experiment has generated controversy, mostly due to the poor performance
exhibited by the test articles. We were quite positively impressed by the scale and scope of
the experiment, which no other facility in the country could even have attempted.' This
reflects most favorably on the NTB. The performance, of the test articles was indeed poor,
which some have construf J as reflecting poorly on the NTB. We feel this criticism is not
justified. Our understanding is that the Version 2.3 Simulator is not an algorithm design
program but rather an algorithm integration program. The test article performance was
exactly a reflection of the quality and the state of development of the algorithms that were
integrated. SDI, and particularly Phase 1,'surveillance, tracking, discrimination, battle
management, and interceptor guidance are the most challenging problem in defense
research and development today. Therefore, it should be a surprise to no one that a test
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article, integration program that precedes vigorous algorithm experimentation would end up

with test articles that perform poorly. Stalla's experimentF are not representative of what

tracking performance is eventually possible and should not be construed in that manner.

3.4 CONCLUSIONS

Good performance of data association, data filtering, data management, guidance,

discrimination, etc., cannot be assured by algorithms anywhere in the community,
otherwise SDI Phase I surveillance, tracking, battle management, and interceptor guidance
would be a, "solved problem." It most certainly is not that. Many experiments focused

specifically on test article development will be required to begin to understand in detail the

keys to good performance and bad. Progress towards "solving the problem" will be made

only by widely disseminating the methods and results of experiments throughout the SDI

community. Test article experimentation is the primary justification for the existence of the

STE separat e from the NTB. It would be an error of major proportion for there to be a
controversy surrounding poor results that might inhibit the critical flow of information and
results from SDI simulation experiments.
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4. CLUSTER TRACKING

One approach to managing the high density SDI threat, particularly during early

midcourse, is to forgo tracking individual objects and instead to track closely spaced
individual objects as a group or cluster. Following the Panels, we will distinguish between

targets as they are in truth, referred to as a group, and targets as they are observed in sensor

measurements, referred to as a cluster. Group will also be used generically to refer to both.

Since individual target tracks are ultimately what is required, the key issues in cluster

tracking are:

* Why do c:usmer tracking?

* When is clusttr uracking performed rather than individual target tracking and
vice versa, and when and how is the transition between cluster and individual
object tracking accomplished?

* What type of cluster tracking is performed?

The Panels have defined a spectrum of group tracking approaches:

0 Group: Group properties alone are tracked.

0 Group with Simple Individual: Simple individual object information is tracked
but the tracking of group properties is emphasized.

• Individual and Simple Group: Simple group information is tracked but
individual object tracking is emphasized.

S dividual object tracdang: Individual object tracking alone is performed.

The Panels have also identified a set of cluster tracking algorithm architectures.
These can be found in the previous survey.'

4.1 INTRODUCTION

Shortly after deployment from post-boost vehicles (PBVs), reentry vehicles (RVs)
and decoys are so closely spaced that sensor observations consist of unresolved clumps of
objects and extended objects. A clump is an observation arising from two or more targets

1 Proceedings of the SDI Panels on Tracking, Issue No. 1/1991, pp. 3-123 to 3-159.
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that appears to be from an individual object, as would happen when two or more targets are
not resolved by a sensor. An extended object is an observation extending over many more
pixels than an observation from a 'Single object. With increasing time from deployment,
clumps may resolve into individual observations and resolved closely spaced observations
may' spread as the targets disperse.2 Target resolution is a function of the optical sensor
resolution and the viewing geometry and range. For this reason, as sensors move along

their orbits, observations could resolve or unresolve, spread or contract.

It is not possible to establish individual tracks on the targets in a clump since
individual object tracking is possible only on individual observations. The density of
closely spaced resolved observations may compel cluster tracking over individual object
tracking as the only practical alternative 'because of great computational expenses in 'track
initiation and misassociation. If targets contract or unresolve, the tracking architecture must
transition between individual object and cluster tracking.

There are critical operational requirements for maintaining tracks on individual
targets, including discrimination of RVs from decoys, threat assessm~e nt, and threat
engagement. Cluster tracking is performed when individual object tracking is impossible,
too expensive, or not necessary. As the threat resolves, cluster tracks spawn individu.ai
object tracks by initializing individual object tracks from the cluster track. Cluster tracking
should be evaluated based on relatively inexpensive computation and communication
requirements and the quality of the initial estimates for the spawned individual object
tracks.

4.2 CLUSTER TRACKING

For resolved closely spaced observatios ns a cluster track develops estimates on some
group properties, suchl as cluster centroid position and velocity and centroid extent. A
cluster gating logic that is'a generalization of that for individual object tracking determines m
the observations to be considered for updating the cluster tracks. A conflict resolution logic
is required for all observations that satisfy multiple cluster track gates. All observations
assigned to a cluster track are used to compute the measurement centroid and possibly the
measurement dispersion. It e measurement centroid updates the cluster centroid state in the d0
standard manner of Kalman filtering. The modeling of the dynamics of the cluster extent

2 This is not to suggest that the threat density will noIt or cannot be increased later in the flight. o
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distinguishes most approaches. Tracks for objects splitting off the cluster are initialized by

the cluster centroid state.

Drummond, Blackman, and Hell3 have extended cluster tracking to multiple sensor

cluster tracking, where the principal difficulty is that the observed size and shape of the

cluster varies from sensor to sensor. For this reason, multiple sensor cluster tracking must

have more information than just the location of the cluster. Drummond et al.'s approach is

to model the group as an ellipsoid in three dimensions. Separate filters are established for

the group centroid and the ellipsoid extent parameters. The group centroid state estimate

initializes the tracks for objects that split away from the group, as before. The ellipsoid

extent state estimate permits sensors in different positions to associate groups.

The cluster tracking efforts with which we have some detailed information are

described in Table 4-1.

Table 4-1. Cluster Tracking Algorithms

Contractor Principal Developers Brief Description

Hughes Aircraft and Oliver Drummond, Multiple Sensor algorithm for tracking
General Dynamics Samuel Blackman cluster centroid and extent.

MIT/Lincoln Laboratory C.B. Chang, Keh-Ping Dunn, 'Individual tracks for the observations
Ming Tsai defining the edge of a cluster to form

tracks for cluster members, which are
assumed to be moving in-parallel with
edges.

Nichols Research Robert Osterheld, Develop individual object tracks of
Corporation Lisa Brahm RVs and decoys deployed off a

common PBV through their closely
spaced phase.

Teledyne Brown Keith Maples Track cluster centroid and the
parameters of an RV-decoy deploy-
ment model to develop individual
object tracks.

3 O.E. Drummond, S.S. Blackman, K.C. Hell, "Multiple Sensor Tracking of Clusters and Extended
Objects," Technical Proceedings 1988 Tri-Service Data Fusion Symposium, Laurel, Maryland, May
1988.
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4.3 CONCLUSIONS

Much more work needs to be done to explore the diversity of algorithms and O
algorithm architectures and the critical issues associated with cluster tracking. Work to date

has only begun to address the problems and possibilites.

The, Surveillance Testbed (STB) will provide an important environment to

investigate these issues. There is one cluster tracking algorithm in the initial set of test

articles being hosted on the STB. The status of cluster iracking remains for the most part

as it was last year in need of experiments and analyses that explore the diversity of cluster

tracking algorithms and algorithm architectures and the critical issues outlined above.
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5. SURVEILLANCE TESTBED (STB)1

Substantial progress has been made towards construction of a testbed to experiment

on and evaluate alternative surveillance algorithms--detection, tracking, discrimination,

and sensor tasking--and to assess ballistic missile defense system-level surveillance

performance. While the STB is being constructed to support both purposes, to the extent
that one takes precedence over the other, first priority must go to evaluation of surveillance

algorithms: An emphasis in favor of experimentation on algorithms increases the prospects
for a testbed that successfully assists in the development of surveillance algorithms and
accurately assesses system-level surveillance performance. The program seems on track to
ensuring the creation of a facility that is sorely needed by the SDI tracking community.

The Surveillance Testbed is critical to SDIO. The* STB will be the SDIO facility
where contractors can with a minimum of modification run their own software in high
fidelity, high detail surveillance simulations to verify detection, tracking, discrimination,
and sensor tasking. A contractor's algorithms can be tested by themselves on the STB as
well as in their role in a complete surveillance system by inserting them into a
complementary set of "house algorithms," algorithms maintained on the STB. With SDIO

approved threat scenarios, and SDIO supplied signal generation and sensor and signal

processing data that are the inputs'.to the surveillance algorithms, critical algorithm
experimentation and evaluation can take place in a controlled environment and scored
according to standardized methods, thereby facilitating performance comparisons. By
having the STB supply the inputs that drive high fidelity, high detail simulations, SDIO
saves the resources otherwise spent when each contractor develops their own extensive
simulation drivers.

This section is based on material from briefings given by Mike Wesley of Nichols Research Corporation
(Huntsville), to the SDI Panels on Tracking, from the 15 October 1990 Coordination Draft of the
Surveillance Test Bed (STB) Build 1 (Phase 1) Design Documentation, CDRL 119, from the STB Build
1 Functional Requirements Document, CDRL A099, 1 February 1991, and CDRL A099-1, 1 July
1991, and from meetings of the STB Test Article Interface Working Group.
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5.1 THE STB DESIGN

The STB is comprised of the Test Environment, which is the fixed experimental

facility, and Test Articles, which constitute the subjects of the individual experiments. The

STB eventually will consist of simulations to experiment on and evaluate alternative

surveillance algorithms, which are used to develop and validate functional representations

of, or data bases for, surveillance algorithms. Based on these functional representations

and data bases, large-scale simulations will quantify system-level performance of the

surveillance system.

The Test Environment is comprised of the Test Driver and the Framework. It is

within the Driver where the user specifies threat scenarios and sensor suites and where

threat modeling, environments modeling, scene generation, and sersor/signal processing

occurs. Trajectory propagation of the threat and sensors will also be done by the Driver.
The outputs of the Driver will be sensor measurements: object sighting messages (OSMs)

and radar pulse returns for the sensors. User control of the simulation set-up, execution,
monitoring, and output format ire controlled by the Framework.

A typical STB experiment will have a definition and pre-processing phase, an
execution phase, and a post-processing phase. Construction of the inputs'to the test
articles, that is, the test drivers, will be performed in the definition and pre-processing

phase, beginning with the specification of a threat from a master threat tape. For each of
the objects in the threat, across their entire trajectories, high detail target signature data

bases are constructed to the extent possible from SDIO's standard phenomenology code:
"the Naval Research Laboratory's (NRL's) Strategic Scene Generation Model (SSGM).

These trajectory and signature data bases are constructed without reference to a specific

surveillance sensor architecture. To this point, test drivers can be standardized for all

experiments.

Each particular experiment is specified by a sensor architecture that includes details

on sensor orbits, sensor fields of view, and various sensor models, parameters, and signal

processing algorithms. Target trajectory and signature data bases, together with high detail

background signature data bases, are inputs to sensor focal plane and signal processing

models to generate sensor measurements. The sensor measurements that result, which are
referred to as test drivers, are the inputs to surveillance algorithms. These test drivers can

be standardized only to the extent that the sensor details and the sensor fields of view are.
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The STB is to be constructed in two distinct phases, the so-called Build I and Build

U. According to the 1 February 1991 Functional Requirements Document, 2

Build I will concentrate on the development of a simulation framework that
will provide the necessary drivers and executive functions to control the
simulation and feed the STB test articles with data necessary for their
operation. The Build I test article algorithms will come from existing
programs or from element developmeat programs. Build I will provide an

S initial operational capability (1OC) testbed for evaluating SDS [the Phase I
Strategic Defense System] surveillance requirements and resolving critical
feasibility issues in an evolutionary fashion with intermediate capabilities
supporting ongoing analyses. Build II will follow Build I development and
will provide a fully modular testbed for evaluating alternative element
surveillance algorithms, models, and concepts of operations at a system

* level.

The purpose of the Build I STB is to provide a simulation capability to
investigate the SDS surveilla.-ce functions and performance capabilities for
the SEIC [Systems Engineer and Integration Contractor], the SDIO, and
other designated government.and contractor analysts.... The purpose of

* the Build II STB is to provide a fully robust test environment to evaluate
alternative surveillance algorithms or design implementations for the SDIO,
the SEIC, and other designated government and contractor analysts.

5.2 STB ACTIVITY OF THE SDI PANELS ON TRACKING

The SDI Tracking Panels have played a critical role in the development of the STB.
Before the STB program was started the members of the Tracking Panels, representing
tracking algorithm designers from across government, FFRDCs, contractors, and academe,
called for an algorithm testbed of this sort. A testbed on which experimentation could be
performed and high detail, high fidelity threat scenarios complete with sensor measurement
data could be produced and supplied to contractors for use in their own testbeds. During
the development of the STB, the Panels provided a peer review of the STB development
plans and supplied the input of the intended user community. The Panels deserve credit for

1 helping to shape the STB into a facility that should well serve SDIO and its contractor

community. In this section, we review the Panels' role in the STB.

The Panels raised several critical issues when the initial STB development plan was
presented. In a resolution delivered to SDIO, the SDI Panels on Tracking during the 27-29
November 1990 meeting held that:

S2 Op. CiL, Ref. 1, pp. 1-4 - 1-5 (see p. 5-1).
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1. The value of the Surveillance Testbed (STB) to the Strategic Defense Ir.itiative
Organization will be greatly enhanced by constructing the Build I STB to L-
flexible enough to accommodate the diversity of tracking algorithms. Amnong
other things, this requires an emphasis on the interfaces between test articles
and test environment, including feedback from the tracker to thc signal
processor. The Panels will work with the STB to detail these interfaces. The
Panels urge that preparations for accommodating alternative algorithms be a
principal requirement of the Build 1. The Panels are very concerned that in the
absence of this requirement in the Build 1, STB will fail to be a tool for
developing and demonstrating tracking algorithms and STB will fail to quantify
strategic defense system performance accurately.

2. Early conclusions on system level performance and system level requirements
drawn from experiments using baseline algorithms may be of limited validity
and should be viewed with reservation. Baseline algorithms need not be
representative of the performance to be achieved by alternative algorithms.
Program offices should have a mechanism to comment on the data and results
produced by the STB.

The Panels' recommendations to the STB are summarized as:

* Development of flexible interfaces between STB test environment and tracking
algorithms must be emphasized early in order to best ensure that the STB
achieves its goal of providing a testbed for developing and evaluating
alternative surveillance algorithms;

* Limited emphasis should be given to early results of systemn-level performance
experiments with the "representative, baseline" algorithms used for testbed
integration validation.

* The STB must support a portable testbed facility.

Interfaces

The Panels identified and analyzed three different critical interface issues for the

STB:

* Interfaces between individual test articles and the STB test environment;

* Interface requirements stemming from permitting feedback from tracking
algorithm to sensor and signal processor, such as swnsor tasking, and

* Interfaces between test articles.

It should be no surprise that hosting tracking algorithms on the STB will require some

software modifications. Everyone can agree that it is imperative to keep the modifications
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to a minimum. The real issues are what sort of modifications, how many, and by whom,
the STB contractor or the tracking algorithm contractor? For the most part, it must be the

tracking algorithm developer who modifies their software since they are the most

knowledgeable of the code's contents. But their willingness to utilize the STB depends on
the scope of the modifications. The STB's government sponsors need to appreciate that,
everything else in order, the STB will fail or succeed based on the scope of software
changes required for hosting surveillance algorithms.

To appreciate interface demands on tracking algorithm software, it is necessary to
describe the software structure of the STB. V ..hin the STB, data are maintained in
logically related groups known as data objects. For example, there are data objects for

object sighting messages (sensor measurements) and for tracks.

Tracking algorithms will be implemented as subroutines within an Ada program that
is referred to as an Ada shell. The shell unloads data objects into the data structures

corresponding to the tracking algorithm argument list via devices called ports and
parameters. The shell calls the tracking algorithm, moves the data in, and returns the data
to the system data objects after completion of the tracking algorithm.

Tracking algorithm-data object interface is provided by ports and parameters. Ports
(to the data) permit the tracking algorithms to access the data objects and get the data.
Parameters permit tracking algorithms to access the data applicable only to it, for instance,
preventing the tracking algorithms for accessing truth, which is maintained in the data
objects for post-processing performance evaluations. Parameters also adapt the data in data
objects to the specific needs of the tracking algorithms. The ports and parameters are key
devices that perrvt the interface of multi-party software not written to be interfaced.

The use of ports and parameters does not preclude data defined internally within a
tracking algorithm, for instance variables for intermediate results in computations. But, all
internal data not passed out to data objects through the ports and parameters will be lost,
that is, will not be saved between calls of the tracking algorithm. The reason for this is

essentially that the STB software simulates a constellation or system of sensors not by
replicating the surveillance algorithms, one complete set for each sensor, but rather by
maintaining data objects for each sensor and using one common set of surveillance
algorithms. To execute a particular sensor's surveillance function, the STB's simulation
executive inputs that sensors data objects into the common set of surveillance algorithms.
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Between succeeding executions of a particular sensor's surveillance function, another
sensor's call to the common set of surveillance algorithms will overwrite the internal data.

0

For internal tracking algorithm data that need to be retained over multiple calls, the

tracking algorithm, its Ada shell, and the STB data object system must be modified to

establish system data objects for storage of these additional data and ports and parameters

to permit access. Potential users need to analyze STB data objects and their own tracking •

algorithms to identify those internal data that need to be stored in additional STB data

objects. The STB needs to prepare to accommodate those additional data objects and, to

modify the ports and parameters accordingly.

The 'Panels were concerned that the STB accommodate the many tracking 0

algorithms that are designed to send information from the trackerto the sensor and signal

processor to affect their operations. For instance, sensor tasking algorithms determine

sensor fields-of-view based on tracking information. These algorithms are critical to the

performance of some surveillance algorithms, particularly for sensors with narrow fields of S

view. Another example is where tracking information is used to vary the sensor scan

pattern or to vary detection thrc-,iolds across the field of view.

The STB now includes sensor tasking algorithms as test articles in high detail

simulations. This means, however, that many of the tasks that were to be done in the pre-'
processing phase will now have to be done on-line during the simulation as tracking

information is used by the sensor tasker to determine fields of view. Background clutter

scenes will have to be produced on-line during the simulation. Target detection and signal

processing will also have to be done on-line rather than in advance since what the sensor 0

sees will not be determined in advance of the simulation.

Tracking algorithm functions that are considered by the STB as basic test article

units are:

• (Cold start) Track initiation

0 Track continuation

0 Differential initialization (warm start/track splitting)

* Track fusion

SCluster tracking

* Sensor tasking.
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Any subfunction within these, such as a Kalman or least squares filter or data
association algorithm, cannot be tested except by being placed within one of the above
basic units. An experimenter's tracking algorithm could consist of any number of basic
tracking algorithm functions. A "house set" of tracking algorithm functions will be
maintained on the STB available to supplement those functions within an experimenter's

tracking algorithm.

Interfaces between tracking algorithm functions are, in general, highly non-trivial.
After all, these interfaces manifest the logic of the tracking algorithm. Tracking algorithm
interfaces can and will vary widely with algorithm and with contractor. Large contractor

* efforts will probably have a mostly complete set of tracking algorithm functions and will
probably not have any serious tracking algorithm to tracking algorithm interface issues.
Small contractor efforts, on the other hand, may not have a complete set of tracking
algorithm functions and may be looking to the STB for supplementary functions. In this

• case there will be a difficult job of interfacing those functions.

Early System-Level Evaluation

The STB is not an algr(rithm design program. In the Build I, "representative,
• baseline" surveillance algorithms'readily available will be hosted so that integration testing

of the simulation framework, test drivers, and test articles can be performed. Baseline
surveillance algorithms used by the STB contractor for integration testing, however, may
not be representative of the performance of surveillance algorithms being developed by

* other SDI contractors. Conclusions on system-level performance drawn from experiments
using baseline algorithms that are not representative in terms of performance would be of
limited validity or even misleading. A redefinition of surveillance requirements as a result
of such experiments would be a mistake.

. Having the means to evaluate alternative surveillance algorithms using high detail
test dr-vers is of the utmost importance to SDIO. Creation of such a facility is extremely
challenging and ambitious in its own right. Only after a host of algorithms have been
implemented can performance which is representative be appreciated. With competitive
algorithms in hand, the STB will be in position to quantify strategic defense system
performance accurately.
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Portable Testbed

A portable testbed facility can be created either by distributing computer threat tapes

or permitting the operation of tracking algorithms from remote hosts. There are several test

tape formats. Usually sensor tasking and signal processing are done in advance so that a

threat tape would consist of sensor orbits and true target states (including intensity) and

measurements. To permit the incorporation of sensor tasking, a test tape will have to be
accompanied by a rudimentary signal processing algorithm to generate sensor
measurements on-line, during the simulation.

The STB has recently decided to permit the capability of running tracking
algorithms on the STB from remote sites. This is most welcome and important. In fact,
for tracking algorithm experimentation, this may turn out to be the dominant mode in which

the STB is used initially. Tracking simulations running from a developer's own computers

could use the STB to generate sensor measurements on-line during a simulation in response
to calls from the tracking algorithms running on the remote host. In this mode, the STB
would essentially play the role of sensor.

Permitting remote host operation of tracking algorithms on the STB usefully
segments the STB user community into three groups:

. Low-cost algorithm experimentation: threat tapes could be distributed with
sensor architecture, true target states, sensor measurements, and rudimentary signal
processing algorithms.

• High-fidelity algorithm experimentation: remote host operation of the STB to.
gain its sensor capabilities, including sensor tasking; no access to STB surveillance

algorithms.

* Algorithm evaluation and access to STB surveillance algorithms: hosting of
algorithms on STB; integration of algorithms in surveillance system to demonstrate S
performance; government evaluation of surveillance algorithms in a controlled environment
and scored according to standardized methods to facilitate performance comparisons.

The attractiveness of this segmentation is that the STB can be all things to all users.
Flexib!k high detail and fidelity algorithm experimentation can be conducted by contractors 9
from their own facilities at a minimum cost without going through the rigors of hosting
algorithms on the STB. After successful development work, these contractors would be
very motivated to modify thei- software as needed to permit the government to evaluate
their algorithms on the STB. 5
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5.3 CONCLUSIONS

Testbed priorities must be clearly established:

* Vigorous surveillance algorithm development must precede surveillance system
evaluation;

* Prepare early to accommodate the diversity of tracking algorithms and
algorithm architectures;

* Interfaces between test environment and tracking algorithms must be flexible
and robust;

* Only after representative surveillance performance is appreciated and quantified
by experiments on individual surveillance algorithms can system-level
surveillance performance be assessed accurately.

The SDI Panels on Tracking will continue to work with the STB, to provide the
SDI tracking community and algorithm experts a voice in the construction and operation of
the SIB.
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PART II

SOME REMAINING PROBLEMS PERTAINING TO THE

DESIGN, UTILIZATION, AND EVALUATION

OF TRACKING ALGORITHMS

11-i



6. SYSTEMS ISSUES IN MULTIPLE SENSOR
BMD TRACKING

6.1 BIRTH-TO-DEATH TRACKING

Cues from boost surveillance satellites to' midcourse and terminal systems can
consist of state vector estimates and estimation error covariance matrices for the states of
the boosters at the end of powered flight, known as burnout, or at the times of the
sz: -llites' last observation for each booster. These estimates are then predicted ahead to
future times, in the first instance by propagation along mostly free-fall orbits, and in the
second case by extrapolation or prediction to burnout preceding free-fall propagation. Cues
from midcourse passive electrooptical surveillance sateliites to ground-based radars can
consist of state vector estimates and estimation error covariance matrices for the positions
and velocities for the free-falling objects after the post-boost phase, at the times of the
satellites' last observations for each of the objects.

In general, trajectories are completely specified for all times by knowledge of the
so-called initial conditions. Uncertainty in the initial conditions implies uncertain
knowledge of the trajectory later. In addition, if there are dynamical model errors then the
trajectories are uncertainly known regardless of the precision with which the initial
conditions are specified. For the payloads of ballistic missiles, midcourse orbits are largely
determined by position and velocity at the end of booster powered flight. The intermittent
accelerations of the post-boost vehicles will alter the orbits and earth impact points of the,
payloads, as will aerodynamic forces.

Tracking algorithms during the track initiation phase estimate the initial conditions
and their error based on some initial set of observational data. Subsequent data are used to
refine the estimates of target trajectories and errors during the track maintenance phase.

Track initiation refers to the process of initializing a full state track for the three-
dimensional motion of the target. Cold start track initiation is the process of computing an
initial state estimate vector and an initial state estimation error covariance matrix from the
time sequence of observations in a focal plane track. It is usually comprised of focal plane
tracking (also known as track assembly) and initial trajectory/orbit determination.
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The assembly of observations in a focal plane track is considered a candidate, full

state track. Each focal plane track consists of a time sequence of measurements, one from

each of multiple successive frames of sensor data, linked together by the hypothesis that

they are from the same target. In focal plane tracking the dynamics of the 'targets are
approximated by simple models. Rather than explicitly modeling the three-dimensional

dynamics of the targets' motion, azimuth and elevation angles dynamics are modeled as

independent linear or quadratic functions. The Kalman filters that result are referred to as
polynomial filters for constant velocity or constant acceleration targets. As an alternative to

filters for azimuth and elevation, independent polynomial filters for each component of the
line-of-sight vectors can be used to track the targets in the focal plane. These avoid the
discontinuities in azimuth as targets pass through the sensor's nadir and zenith points.

Booster track initiation is usually accomplished by the algorithm variously known

as. template matching or profile matching. Succinctly, templates are historical averages and

a priori assumptions of booster trajectories derived from data observed by national technical
means and trajectory reconstruction programs. There are templates for altitude, ground
range, acceleration, mass, intensity, etc., versus time from launch for each missile type and
mod . Two fundamental issues, which we address below, immediately attend this use of
historical averages and a priori assumptions on booster trajectories:

* To which template should the observed data be matched?

* What is the reliability and credibility of relying on templates?

Midcourse angles-only initial orbit determination is an old subject with a pedigree
that extends back almost two hundred years to Gauss and Laplace. The fundamental
midcourse tracking challenge to this time has been the large number and high density of
missile booster, RVs, decoys, and clutter to'be tracked. As the severity of the threat
declines, as measured by density of objects seen by a sensor, from a defense against a full
Soviet attack, to a defense against accidental or unauthorized missile launches, to theater
missile defense, data association becomes less of a concern. Single satellite angles-only
track initiation in the dense observation environments of Phase 1, and perhaps GPALS, is a
critical issue.

The issues in BMD cold start track initiation, both for the template matching in
'boost-phase and for midcourse, are first the ability, in a dense observation environment, to
assemble a reasonably small number of credible time sequences of angles-only
measurements without being able to use models for the detailed m~odels for the three-
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dimensional target motion. The other issue is the reliability of the initial trajectory/orbit

determination algorithms and the accuracy, precision, and credibility of their initial state

estimates and estimation errors. Low precision state estimation errors will lead to greatly

complicated data association problems for track maintenance in dense observation

environments. The critical issue is to gain high enough precision estimation errors to

mitigate data association problems. We know of no simulations where these issues are

thoroughly examined.

In a fully integrated ballistic missile defense surveillance system, tracks would be

disseminated and fused throughout the various battle managers and sensor elements:

boost-phase surveillance sensors, space-based and ground-based space surveillance

sensors, and terminal-phase sensors. Ballistic missile defense birth-to-death tracking is the

concept of maintaining continuous tracks on targets from launch through to impact by

fusing tracks across sensor elements. Birth-to-death tracking schemes range from the

grand to the temperate.

In the grandest design of birth-to-death tracking, downstream narrow field-of-view

sensors that lack adequate independent search capability are enabled by pointing directions

from upstream sensors. Additionally, downstream sensors initialize tracks by relying

entirely on upstream track hand-overs. Boost-phase tracks would be handed over to the

post-boost and midcourse surveillance sensors for continuation: booster burnout position

and velocity would initialize the post-boost vehicle (PBV) track. Narrow field of view

optical midcourse sensors would be directed where to look for the PBY rather than

independently searching. Ground-based radars would also be cued where to look for

midcourse and reentering objects to gain increased detection ranges. As the PBV dispenses
reentry vehicles (RVs) and decoys, tracks for each would be established by spawning new

tracks from the continuing PBV track. Every object in the midcourse then could be traced

back to its origin, PBV and booster, and a track for each established essentially by

continuation of booster tracks. There would never be need during midcourse for the "cold
start" track initiation procedures of assembly of a sequence of measurements for initial orbit

determination data processing. All midcourse tracks would be initialized by "warm start"

track initiation: hand-over of track data from upstream sensor elements and spawning new

tracks from existing tracks.

With track hand-overs, the battle manager can launch and guide ground-based
interceptors to their targets entirely independent of their ground-based radars. Midcourse

6-3



tracks could be'handed over to interceptors as in-flight target updates to enable on-board

guidance algorithms to fly the interceptors into the close proximity of their targets, where

the interceptor's own on-board sensors would take over. Midcourse tracks handed over to

the battle manager could also permit the early commit of interceptors before their radars see

the targets but, in this case, the radars would guide the interceptors as the targets come into

view. Ground-based radars could use midcourse track hand-overs to cue their search to

concentrate energy into narrow fields of view to gain increased detection ranges. The

common goal of these cueing schemes is to enhance the battle space of the ground-based

defense system.

Birth-to-death tracking in its grandest design is logical and efficient. It possesses

the virtues of omniscient accounting of threat objects, enabling of relatively inextpensive

narrow field of view optical sensors, and avoidance of the immense computational expense

and complication of cold start track initiation. But it counts on the existence of a seamless

link across sensor elements, in which upstream track information is available exactly when

and where it is needed. Such a link is ambitious, perhaps even feasible. But a surveillance

system that is entirely reliant upon it is critically susceptible to catastrophic failure.

Temperate birth-to-death tracking schemes cue downstream sensors to assist (rather

than enable) relatively narrow field of view optical sensors, to increase the battle space of
ground-based BMD systems, and to avoid cold start track initiation but only if and when

upstream track hand-overs are available. Hand-over tracks are not considered to supplant

an independent operational capability for each individual sensor or individual sensor

element.

Ultimately, it is a question of capability versus robustness agair.t catastrophic

failure. Each sensor element and each individual sensor must be capt., of searching a
reasonable surveillance regiorp and performing cold start track illitlation to reduce
vulnerability and to constitute a system that works in a world of communications delays

and misdirections and the'unexpected, but only if adequate capability is achievable or

affordable in individual sensors or sensor elements.

6.2 BOOSTER TRACKING AND TEMPLATE MATCHING 9

Boost-phase tracking experience to date is limited. What can be performed well is

the tracking of a small number of targets across the focal plane (focal plane tracking) of a

passive electrooptical sensor on board geostationary satellites without explicitly modeling
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the boosters' detailed three-dimensional dynamics or explicitly tracking the boosters' three-

dimensional trajectory. Historical averages and a priori assumptions for booster altitude

versus ground range flight profiles and intensity versus time profiles, known as templates,

are used to estimate launch locations, times, and azimuths, and to identify missile types.
But with regard to using focal plane tracks and templates to predict future states in post-
boost, midcourse, and reentry, the accuracy required for BMD has not yet been
demonstrated. Brilliant Pebble booster tracking of a particular sort has been demonstrated
in limited simulations with low fidelity data and without clutter. Extensive simulations that
demonstrate convincingly the tracking accuracy required for booster surveillance, good
weapon-to-target assignment, and good pebble guidance performance remain to be done.

Booster tracking algorithms can:

a Estimate so-called tactical parameters, which are the missile launch locations,
times, azimuths, altitudes, and the degree to which the missile is lofted or

40 depressed from a nominal trajectory;

. Assess the number and types of missiles launched in the raid;

* Predict missile payload impact points on the earth;

* cue midcourse and terminal ballistic missile defense systems, both sensors and/
interceptors; and

* Provide fire control information for booster interception.

Tactical parameter estimation, raid assessment, and coarse impact point prediction
constitute the traditional tactical warning and attack assessment (TW/AA) functions. More
precise impact point predictions and cues to midcourse and terminal sensors and
interceptors can enhance midcourse and terminal BMD performance and also enhance

TWIAA performance.

There are essentially three data processing or filtering methods for tracking
boosters. The first method is to model in detail the complex three-dimensional dynamics of
the booster. This requires some knowledge of key booster parameters such as thrust,
mass, and drag. The full art of Kalman filtering technology is required to compensate for
model errors such as uncertain and neglected parameters in the booster dynamics models

and booster maneuvers. The Kalman filter's integration of the booster's three-dimensional
equations of motion and estimdtion of the booster's three-dimensional trajectory using the
sensor data, if it is achievable, reliable, and credible, should provide the best tracking

performance.
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For the Kalman filter booster tracking algorithm, the dynamics model is critical.

Booster dynamics are complex, involving gravity, time varying propulsive forces, and

aerodynamic drag and lift forces, which vary with the missile type and mod and with the

booster's velocity and angle of attack. Detailed models used in trajectory construction and

reconstruction are not appropriate to tracking because they depend on too many individual

parameters, which cannot be estimated accurately, reliably, and credibly in real time. It

should not be necessary, however, to model and estimate these many parameters to

accurately track the target for the purposes of BMD. Neglecting some parameters, or

modeling their effect approximatel; or incorrectly will introduce model errors in the

Kalman filter. These must be compensated by advanced Kalman filtering techniques.

Missile booster trajectories are principally determined by propulsive capabilities and

guidance sophistication. In general, missile boosters both as a matter of course and as a

matter of design can execute very significant maneuvers, including changes between orbital

planes (yaw), staging and other thrust variations, and maneuvers designed to burn off

excess propulsive energy (so-called energy management maneuvers) such as nonzero

angle-of-attack flight profiles and in-plane (pitch) changes. These maneuvers can also be

considered as model errors in the Kalman filter that also are to be compensated for by

advanced Kalman filtering techniques.

SHigh fidelity, data-adaptive tracking filters are by their nature designed to chase

boosters through significant maneuvers and model errors. Yet it remains to be

demonstrated that boost phase tracking filters using angles-only measurements can track

boosters accurately through pitch and yaw changes, staging and other thrust variations,

energy management maneuvers, and modeling errors, in a possibly dense observation

environment.

The second method for booster tracking is to determine td. ee-dimensional booster

positions by associating and triangulating lines-of-sight across multiple satellites. Three-

dimensional velocity is computed by interpolation and numerical differentiation of the

positions. Compared to integrating the three-dimensional equations of motion, the

interpolation and numerical differentiation are inherently limited in the accuracy of their

velocity estimates, although it remains to be seen whether this accuracy is sufficient for

BMD.

The last method is to use a nonlinear iterative least squares algorithm to fit the

angles-only sensor data to a priori booster altitude versus ground range flight profiles,
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where it is assumed that the booster's motion with respect to the launch point is nearly
fixed in one plane.' Template matching depends on the validity of the a priori assumptions
on altitude versus ground range flight profiles and the essentially two-dimensional character
of the trajectories. Unsophisticated guidance methods would tend to keep booster
trajectories to historical average fligh't profiles and essentially two-dimensional.

* To initialize the Kalman fili... the nonlinear iterative least squares algorithm fits the
angles-only sensor measurement data from an early portion of the powered-flight (60-120
seconds time after launch is common) to a priori booster altitude versus ground range flight
profiles. The least squares fit estimates the booster's three-dimensional state at the. time of

* the last measurement, the current time say, which initializes the Kalman filter, for it to
maintain track beyond this initial period.

The same least squares fi t estimates the booster's tactical parameters. These are the
booster's initial state, which consists of launch latitude and longitude, launch time, launch

* azimuth, launch altitude, and the degree to which the booster is lofted or depressed from
some nominal trajectory. An estimated launch region is determined from the estimation
error. Estimation of tactical parameters is an important part of tactical warning and attack
assessment.

TW/AA also includes decisions on missile type. Missile typing is important for
*BMD battle management and may be important in booster tracking al gorithms by helping to

determine values for booster thrust, mass, and drag used in Kalman tracking filters. A
template matching is performed in which sensor intensity measurement data is fit to
intensity versus time profiles. Missile type is decided according to the intensity template
that achieves the best fit.

The anigles-only data template matching also performs missile typing. One method
0 is to test which missile types can be found in the estimated launch region by comparison to

a data base of missile launcher locations or mobile missile patrol areas. Another method is
to select the missile type according to the template that gives the best fit of the angles-only
data to the altitude versus ground range profiles. The latter is referred to as metric typing'.

In the execution of template matching algorithms these speciL. qcestions remain to
be quantified:

Under what viewing geometry and range conditions does the numerical
algorithm converge?

* * What is the accuracy and precision of the initial and currenit state estimate?
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* What are the effects of clutter, false alarms, and multiple targets on
convergence and estimation performance?

* How accurately can missile typing decisions be made and what is the relative6
importance of the different missile-typing performance algorithms?

6.2.1 To Which Template Should the Observed Data Be Matched?

There are essentially four sources for templates. First, the Aerospace Corporation
publishes the Master Target Model Book which is a summary of booster flight
characteristics based on data observed by national technical means and trajectory
reconstruction programs. Typically, there is one and only one set of profiles for each
missile type and mod. No lofting or depression information is present.

The missile systems in the Model book have already flown in contrast to the future
systems that typically populate SDIO threat scenarios, which are set in the future. For
these future missiles, in an apparently ad hoc manner, the SDIlO threat generation
community has produced templates using the same software that produces booster
trajectories for the threat scenarios. Because they are made to order, in a sense, a family of
templates for each missile type and mod can be developed to represent lofting and
depression from nominal trajectories.

A third source is when some contractors with sophisticated booster modeling
capabilities augment whatever templates they are given from whatever source, to create
lofted and depressed templates. This is fine so long as some check is maintained to prevent
the templates from being tuned to match the trajectories they are to track.

The final source is when threat trajectories in a particular attack scenario on a
particular threat tape are averaged into templates. Clearly use of this sort of template' is
suspect. The immediate. relationship of the booster traje.ctories in the threat with the
templates that are then used to track them, the very same trajectories that generated the
templates, produces possibly invalid results and grossly misleading performance
assessments. This, source of templates must be strongly discouraged.

The Master Target Model Book cannot supply the templates for SDIO scenarios set
in the future because of the mismatch between templates for missile systems that have been*

observed, on the one hand, and SDIQ threat scenan-os that involve future missile systems
that have yet to fly and for which no templates based on observed data can be constructed,
on the other. The community that produces the Model Book could be asked to produce
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templates for future systems but this would represent a departure from their standard
methods, most importantly the reliance on observed data. SDIQ, possibly by way of its
Threat Working Group, possibly in conjunction with the intelligence community, needs to
firmrly control the development and promulgation of templates for use ýy SDIO contractors.
there currently is a gap of immense proportions between the intelligence community
providing templates on current inventory missiles and the free-for-all of assumptions on the
character and content of template data being made by SDIO contractors. If control is not
taken by SDIO, the validity of all template matching results is at ris':. and could be
considered suspect.'

* One key issue is the diversity of templates and the uncertainty of their data.
Templates are a priori assumptions for missile flight trajectories. Templates are also
averages over observed, historical flight profiles. There are, however, no uncertainty bars
around their data. How uncertain template data are because of uncertainties in the observed

* ~data and trajectory reconstruction processing, how much templates vary by the source that
produces them and by missile' type and missile mod and whether it matters are all open
questions. The usual assumption made within the SDIO community is to use a bank of
templates to account -for any wide diversity, with the tracking algorithm selecting the correct

* template for a particular target and the particular template 'within a family of lofted to
depressed altitude versus ground-range flight profiles for the missile type and mod.

The most important issue is the degree to which templates are. identical to the
trajectories being tracked. Should they match? If the, altitude versus ground range

* templates cloc:.y parallel the, booster trajectories to be tracked then good template matching
performance should be expected. In a sense, close identity is akin to having assumed away
the problem: All the uncertainty in the booster motion is removed and captured in the
a priori data bases of templates. Unless we believe we can assume away the problem,

* templates, in, general, should no', be identical to the actual booster trajectories to be tracked.
One exception might be third world missile forces whose unsophisticatee guidance systems
would keep the booster trajectories to simple flight profiles.

*6.2.2 Templates and the Use of a priori Information

For some, use of a priori information should be very limited'or even avoided
entirely. In response, it can be argued that the modeling assumptions that enter into
tracking filters are themselves a form of a priori information. These assumptions may
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include supposing that the booster jerk (the rate of change of the acceleration) is constant,
or that the booster will fly a gravity turn in first stage, or that the thrust is constant for each
stage and that its magnitude is known, or that the, booster Will fly along a priori -flight
profiles. But there are differences among ty.p.-s of a priori information both in content and

effect.

A priori information can serve usefully to restrict target dynamnics models and
compensate for information not present in Measurements. For instance, in the model for
the deterministic and stochastic components of the dynamics, the algorithm designer relies
on his computational experience and intuition to govern what must be included and how it
is included, and what can be neglected. Deciding whether and how to model'variations in

thrust, for instance, is different in scale from assuming the booster will fly in the manner of

a priori flight profiles.

The key concern is that reliance on a priori information may leave the algorithm
vulnerable to boosters that do not do the expected, or the mean, or are of type and
circumstance outside the a priori inforn- ation's domain of applicability. The consequence
may be susceptibility to catastrophic failure. Balance is the key: use a priori information
when necessary but in a manner that is as flexible as possible and that does not leave undue
susceptibility to. catastrophic failure.

6.2.3 The Concept of Tracking Algorithm Architecture

Tracking algorithm architecture refers to the structure and flow of information
within a tracking algorithm. The SDI Tracking Panels ,have identified four basic tracking
algorithm architectures:

Iy.)2: Individual sensors operate independently.

Iy~e Individual sensors develop tracks independently that are then fused
across pairs and multiples of sensors and possibly fed back to the
individual sensors.

J= M.I Observations are fused across pairs and multiples of sensors and then
processed into tracks.

J= IV: Observations and tracks are processed centrally after association of
observations and tracks is performed at each sensor.

Each architecture has its particular strengths and weaknesses. Type I architectures
are the most survivable, have the least communication loads and simplest operational
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needs, but must track within the limitations of the information provided by only one

sensor. For instance, passive electrooptical sensors measure the angles-only information in

the line of sight to a target and do not measure range. Angles-only measurements provide

scant information by which to estimate booster dynamics, which are quite variable. This

single satellite angles-only booster tracking filtering problem is a challenge to the state of

the art.

Range can be obtained by fusing line-of-sight measurements across pairs of

satellites as in Type III algorithms. Fusion of lines of sight across pairs of satellites

demands large communication loads, and algorithms that rely entirely on having fused

* lines-of-sight information are the least survivable. Moreover, the association of lines of

sight across stereo partners is a challenge to the state of the art in dense observation

environments arising from multiple targets, clutter, and false alarms.

Type 11 algorithms can be subdivided into two groups based on whether the fused

* multiple sensor tracks are fed back to the individual sensors. It is also useful to distinguish

whether the tracks being fused are focal plane tracks or full state tracks. Focal plane track

fusion has the same association challenges as fusion of lines-of-sight. Fused full state

tracks fed back to the sensor to replace each satellite's focal plane tracks tracks would then

* be maintained by the satellites. Full state track fusion is less challenging owing to the

additional information in the full state which assists greatly in the association process.

Fusion of multiple satellite full state tracks is done to enhance the quality of the individual

sensor full state esti, jates and to provide a comprehensive view of the surveillance region.

S• Type IV algorithms are :Jeal in terms of performance. Each sensor associates

observations and tracks, which are then passed ",for centralized data processing. Tracks
frrn the cerntralized data processor are used t y the individual sensors for the association.

The estimation performance is ideal because all available data are used in the processing.
* Communication demands are very high. Operational demands typically are so great as to

make these algorithms impractical, however.

In BMD tracking algorithm development work to date, Type I and Type II

algorithms dominate, the latter mostly withou: feedback. There has been some

development work on Type III algcrithms. We are not familiar with any credible Type IV

approaches.
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6.3 SINGLE SENSOR MIDCOURSE ANGLES-ONLY TRACK
INITIATION

In midcourse track initiation, t!e targets are expected to be closely spaced in the real
three-dimensional space and, more importantly, on sensor focal planes, depending on
sensor resolution and signal processing and on sensor-object distance and aspect angle.
Closely spaced objects' re expected to generate a large number of candidate track
assemblies, many with poor track purity. Impure track assemblies may suffer numerical
divergence or inhibited numerical convergence and inaccurate convergence values. The
immense cost in midcourse cold-start track initiation arises from the assembly of a large
number of candidate tracks, the computational expense of computing initial state estimates

for each, and the computational and memory burdens for storing and sorting candidate

tracks.

Computing an initial state estimate from single sensor angles-only data of an object
in orbit has a long and distinguished pedigree in celestial mechanics, where it is referred to
as the problem of initial orbit determination. We shall describe the classical methods of
initial orbit determination of Laplace and of Gauss, including the Herrick-Gibbs refinement
to Gauss's method, that emphasize using the minimum possible data set of three sets of
azimuth-elevation angle measurements.' We shall also describe the estimation-based angles-
only initial orbit determination methods of Chang that use more than three measurement
sets. Last, we shall describe a new algorithm proposed by Taff et al. that is a new
approach to initial orbit determination.

6.3.1 Classical Angles-Only Initial Orbit Determination: Laplace and 0
Gauss and Herrick-Gibbs

The classical methods of initial orbit determination from three sets of angles-only
measurements were published by Laplace in 17801 and Gauss in 1809.2 Both methods

lead to equations of similar form:

B

r2 =p 2 + R2 +2cpR , (6-1)

I According to Laurence G. Taft in Celestial Mechanics.

2 Gauss, K.F., Theoria Motus Corporum Coelestium, 1809 reprinted as Theory of Motion of the
Heavenly Bodies, New York, Dover, 1963.

6-12

./



i

which leads to the eighth-order equation for r:

S r8  (A2 +R 2 +2cAR) r6 +2B(A+cR) r3 +B 2  (6-2)

In these equations, p is the unknown sensor-object distance, r is the unknown object-earth
* distance, R is the known sensor-earth distance, c is a known number, and A and B are

coefficients determined by, and particular to, Laplace's method and Gauss's method.

Laplace's Method

* Laplace's method uses the exact dynamics of a satellite orbiting a spherical earth,
the line-of-sight vectors determined by the angular measurements, and numerical estimates
of the first and second time derivatives of the line-of-sight vectors. Consider the object
located at I with respect to an, earth-centered inertial (ECI) coordinate frame, the observing

* sensor located at R in the same ECI coordinates, and, the object located at p. with respect to

a satellite-centered nonrotating frame.3 Thus,

S (6-3)

For a spherical earth, Newton's law of gravity states that

rt=-JA P A- (6-4)
- r3  R

Now a = pL, where L is the line-of-sight unit vector determined by the azimuth and

elevation angles. With Newton's law Eq. (6-5) becomes

At (PL+R)
r3 +

r - (6-5)
=PL+2PL+pL-

5 3 Vector quantifies are denoted by underline.

6-13

0 ." . .

I/ ' 1 I



,0

By the following operation

(Lpx L)+ R) p
T (6-6)

"(x L) =2 1p(L2 (Lx L_)L+(LxL) 3
r3 R3

we can isolate p and dp/dt:

I [-_(L~xL)._ R-3A(LXL

P _ = - 3 L_.L 6 7

L /• •xL).R- R 2 -- (xL).

2(LxL) _L R _

There are two critical issues in usin6 Laplace's method. First, the accuracy with
which the time derivatives of L can be numerically computed from measurements of three
lines of sight. Second, the method fails when

(Lx,). L=o

This is necessarily the case when the sensor satellite and target are coplanar.

Gauss's Method

From classical mechanics we know the motion of objects under the influence of a
central force (a force acting always along the line connecting the object to the force center) •
is always motion in a plane: the angular momentum vector I = r x y is constant. Gauss's
method invokes the coplanar character of the three positions in the angles-only observations

and uses an analytical approximation for a power series solution of the equations of
motion.

Consider the three three-dimensional positions ri, r2, and r3. Because the objects

are coplanar, the three position vectors are necessarily linearly dependent, that is, there
exist scalars cl and c3 such that

r2 = cl r + c3 r3 " (6-9)
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Now, we can compute

r x r2 a 2 A12&

--c 3 r1 xr 3 s2 c 3 A13 ((6-10)

r 3 x r2  - 2 A2 3 _

r13=-C1I rI x×r3--2 c1 A 13A

where the Ali's are the areas of the triangles formed by the vectors and wy is a unit vector in
the direction of the angular momentum vector. w -h / E h I. We immediately find that

c3  A 2 /AI3 cc=A 23 /1A 3  (6-11)

Below we shall derive the power series solution of the equations of motion, which

take the form

r =F r +G v r F3 r2 +G 3 v2  (6-12)1 '1 2 1 v2 ' r3 , _ 3__ V

where the F and G coefficients are often referred to as Lagrange's F and G coefficients.

Using this result A,,, find

A ~w. - ej w = c 1 .(frx 1~12., 2-. (rLxr!) .

'A a w -(r2x ýL) G h"23. 2 3 (6-13)
A 3 -lw_ (r 1xr)=±(•FG F3 GI)h

13 2w -- -2 2 1 3 -FG)

since h 12 x x2 = Ir2 x v2 1w. Therefore,

'c3 FG-FG Cl FG-FG (6-14)

1 3- 3 1 1 3- 3 1
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Now the power series solution of the equations of motion

S(6-15)

is based on a Taylor series expansion for r about some ro

*(t-t 0 )n d('I
1(t),- (t - (6-16)

n.. n! dtn

Successive differentiation of the equations of motion involve higher order derivatives of

pWr 3:

de_ 3g dr 3 e dre • r3 - - 7T rVd" -"r-T" -- 3 e I.

P3  dt r~t 7  ~ E
ldr r*v
r dt r 2

dX. v2  r 2 (r v_) dr
dt r2  r 2  r3  dt (6-17)

V2

d .2-v dv_ 2v 2 dr
dt r2 dt r3 dt

-- 2e6-2* .

We see that e, X, and 41 form a closed set under differentiation. We can now evaluate the

derivatives in the series expansion in terms of these expressions

dl' d 2 r dy
, -

dtdt 2  dt
d(3)r

-==r-=t =
dt

3 ,

d(4)r (6-18)
- 3e~r+3etr+3e~v- v- ev

dt 4  -- _-

e [-15 C 12 - 2- 2 +3e*]i+[6eXI]vetc.
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In this fashion, the Taylor series expansion becomes

r(t)- F()r1 + G(t)y (6-19)

where r and y0 are constants.

In Gauss's method the Taylor series expansion is about the intermediate state 12 and
y.2 and the analytical approximation truncates the Lagrange coefficients after the first two

terms

_2 
(6-20)

The coefficients c1 and c2 are now easily expressed in terms of the times and 12.,

Substituting Eq. (6-3) and the expressions for the c's into the coplanarity condition Eq. (6-
9), we can derive Eq, (6-1) for r1 and P2- We can then determine 12 after which we can
compute r1 and 13.

To complete the initial orbit determination problem, we need an expression for X2.
One method is to interpolate among r1, 12, and r3 and then numerically differentiate. The

Herrick-Gibbs 4 improvement to this method is to truncate the power series after the fourth
order term. With the position vectors as determined above we can compute an expression
for , that is valid to fourth-order in time.

Gauss's method performs poorly when the analytic approximations for the power
series solutions to the equations of motion are poor, and hence the values for the c
coefficients are poor. Whether this prevents the application of this method for ballistic
missiles is currently a matter of contention.

4 Gibbs, WJ., Mem. Natl Acad. Sci., 4 (1888) and Herrick, S., The Laplacian and Gaassian Orbit

Methods, University of California Press, Vol. 1. No. 1, 1940.
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6.3.2 Estimation-Based Initial Orbit Determination: Chang

Chang5 developed an iterative least square algorithm for estimating the state of a

nonlinear deterministic system with nonlinear noisy measurements which he applied to the
problem of angles-only initial orbit determination using more than three observations.
Following Chang consider the nonlinear discrete system:

x, - ), n-i,... (6-21)

"or nonlinear continuous system

S- g) (6-22)

and the nonlinear measurement equations:

-. "h(,) + v (6-23) 0

where 2 is the state vector, y is the noise corrupted 'measurement vector, y is the white

Gaussian zero mean measurement noise process with covariance Rn, and n is the discrete

time index. We can always obtain an equivalent discrete system from the continuous
system by numerical integration of the equation of motion:

tn~l

_(t., 1 ) - x_.1)+ g ()dt (e• (6-24)

We can relate the state vector at time n to the state vector at time 1 by iterating the. S
equation of motion n times

x .f (X) (6-25)

5 C.B. Chang, Optimal State Estimation of Ballistic Trajectories with Angle-Only Measurements, MIT
Lincoln Laboratory Technical Note 1979-1,24 January 1979 and "Ballistic Trajectory Estimation with S1
Angle-Only Measurements," IEEE Trans. Auto. Contr., Vol. AC-25, No. 3, June 1980, pp. 474-480.
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where if the system were linear fn( ) would be the product of n transition matrices and if the

system were continuous then

f .(t1)+ ,fg(x)dt (626)

The algorithm iteratively processes a batch of data, yl , ...2, Y, to determine an

estimated state sequence for 26, n = 1, ..., N that, subject to the constraints of the

equations of motion, minimizes the weighted least squares error:

N-

J - E (6-27)
n-I

SThe minimization is accomplished by expanding the nonlinear system and

measurement equations in a first order Taylor series about an initialestimate of the true

state:
0 0

"-- -f(xl I" + T,---F- (xl -;1

f -(9 - initial estimate for x
- initial )•stimate for x(6-28)

F - I. - Jacobian of f(xl) evaluated atx_

(6-29)

IFO '-"U' Jacobian of f evaluated at XI
SL..: 

'

The minimization equation now reads
NT

9(6-30)
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Taking the derivative of J with respect to 2i and solving for x, yields

2y - -hi) •-° -)
6x -

x-9 -(6-31)[ .-T.-F°* FToTo -0o. F OTFo 1-y h
n-I n- I

If the algorithm converges, the solution is a better estimate than the initial estimate. If we

use the solution in the place of the initial estimate and repeat the calculation, and if the
algorithm converges, we will compute a further improved estimate. We have thus denved

an iterative algorithm:

I-k It n-IkjFk FkT k'Y-o(-2

and the covariance of the estimate is

coy (:.k') . ]" -. (6-33)

This follows from rewriting the estimate as

+ ,' N ~ .

tkIjk k

~X1 '[~F THI 'HfT 1 T~FCTRgT1vl

The process is terminated when' the difference in values of J between successive
iterations is below a threshold. From the estimate and covariance at the initial time, the

estimates at any time can be calculated as
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f(xl) + (1-.1) (6-35)

-cov ( - F. cov (Q)_F

The convergence of the algorithm depends strongly on the initial guess for the
iterations. Chang suggested two procedures for computing the initial guess. One method
is to smooth the batch of angle measurements by a second order polynomial to obtain their

"derivatives. The smoothed angles and derivatives are applied to the equations of motion to
compute the range and range rate, which together form the initial guess. This algorithm is a
modification of Laplace's method that uses more than three observations. Its computation
of range and range rate fail when the, sensor and target are coplanar, as does Laplace's

method.

The second method uses the fact that total mechanical energy is conserved during
the free-fall portion of flight. An alternative equation for range and range rate can be,
derived from the energy equation. We can compute range and range rate with a guess for
the average total energy and using the smoothed angles and derivatives. Thrasher6

discusses a method for detecting the inplane case.

Herget's method, Which 'also uses more than three angles-only observations in a
least squares estimation algorithm, predates Chang's algorithm.7

6.3.3 Statistical Initial Orbit Determination: Taft et al.

Taff et al.8 adopt a very different point of view compared to the methods'presented
above. Indeed, they regard the computation of initial orbits based on angles-only data as a
"futile endeavor." Their argument is essentially that the high observation density makes
track assembly and cold start track initiation algorithms too expensive to implement. And
furthermore, the initial state -stimates they generate are of poor enough precision that

6 Roy Thrasher, State Estimation of Ballistic Trajectories with Angle-Only Measurements, Alien
Research Corporation Report ARC-TR-87-003, 21 May 1987.

7 Paul Herget, "Computation of Preliminary Orbits," The Astronomical Journal, Vol. 70, pp. 1-3, 1965.
8 L.G. Taff, B. Belkin, and G.A. Schweter. *Statistical Initial Orbit Determination," Proceedings of the

SDI Panels on Tracking, Issue No. 3, 1990, pp. 4-285 to 4-307.
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subsequent data association attempts are complex and expensive, and ultimately do not give
good performance. Taff et al.'s method uses templates to represent all possible orbits from
a multitude of launch points to a multitude of impact points. The angles-only observational
data would then be used to select among the templates which have good estimation
precision.

Taff et al. begin by dividing the Soviet Union into rectangles and similarly dividing
the conterminous United States, Alaska, and Hawaii. They develop a set of orbits
representing flights from each launch area into each impact area. The algorithm first selects
from among all possible orbits the set that best matches the first angles-only observation.
Then with the next angles-only observation, the algorithm selects the best match from the
subset. This results in one particular orbit.

This method is very interesting. By computing the initial orbits with essentially two
angles-only observations it avoids the great challenge of cold-start track assembly. Initial
orbits could be determined for any two observations from successive frames. The
algorithm's feasibility -,mains to be', demonstrated, however.



7. PERFORMANCE EVALUATION METHODS FOR
MULTIPLE TARGET TRACKING ALGORITHMS'

Ultimately, the performance of tracking algorithms is judged by the success, or
faillure, of the mission they support. The destruction of a target by an interceptor guided, in
part, by tracking information' provides one vivid, obvious measure of success. But, what
if the interceptor midssed? Did the tracking algorithm perform poorly, or the guidance
algorithm, or the sensor and signal processing, or the rocket motor?.

In a computer simulation of a complex system comprised of myriad subsystems and
algorithms, it is difficult without specific tests to untangle the performance of any
individual component. We describe measures of effectiveness to evaluate. tracking
algorithm performance in computer simulations. While these might be considered to be
intermediate measures of effectiveness for the system as a whole, they aire all important for
diagnosing and evaluating tracking algorithms considered in their own right.

Evaluation of tracking performance is straightforward in an environment of few,
widely spaced targets and no false alarms or clutter. In this sparse environment, a track is
consistently updated with measurements from the same target. The track, or state estim'ate,
is then associated and compared with the true state of the target, which is obvious as
identified by the one source of the measurements.

Performance evaluation'is more complex in a dense environment Of:
* False alarms;

* Quttet-,
* Multiple targets;

* Individual observations arising from unresolved closely spaced objects
(CS~s).

In this case, a track is not consistently updated with measurements from the same
target because some sensor observations of other targets, clutter, or false alarms will be

IThis chapter is a close adaptation of a paper co-authored with Oliver E. Drummond, Air Defense
Systems Division, General Dynamics, and prescnted at the SPIE Conference Signal and Data Processing
of Small Targets 1991. 1.3 April 1991, Orlando, Florida.
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incorrectly associated with the track and some sensor observations associated with the track

will be of unresolved CSOs. With misassociations and unresolved CSOs, the source of the
measurements in a track will not be a clear indication of a single target, thus confusing 0
which track is to be compared with the true state of a target. 2, 3, 4, 5 Furthermore, in a
dense target environment, there may be

* Missed tracks: targets without tracks;

* Redundant tracks: more than one track for one target;

0 Spurious tracks: tracks for no targets whatsoever.

We describe scoring methods for evaluating the performance of multiple target
tracking (MTT) algorithms fairly without undue bias towards any particular type. For
instance, some algorithms may generate many "extra" tracks, such as in multiple
hypothesis tracking,+ but the track purity and state estimation accuracy of the N best are
better than the N tracks of algorithms that do not knowingly generate "extra" tracks, such
as local nearest neighbor. Insofar as track purity and state estimation are concerned, the •
former is to be preferred, whereas the latter may be preferred from the standpoint of
computational and memory costs and size, weight, and power of on-board processors.

These methods were developed initially by individuals and further developed and
adapted by the members of the SDI Panels on Tracking. It is part of an ongoing process
and is not to be considered as the last word on the subject.

Track purity over a time interval refers to the degree to which a track's
measurements over that time originate from a particular target. In single target tracking •
without false alarms and clutter, track purity is ensured and the association of track-to-truth
unambiguous. Multiple target tracking typically involves many impure tracks and,
therefore, ambiguous track-to-truth association. We will define scoring criteria for track
purity in dense target environments. In principle, track purity can be used to determine

2 0.E Drummond, Multiole-Obje:t Estimation, UCLA Ph.D. Dissertation, 1975. Xerox University
Microfilms No. 75-26, 954.

3 O2. Drummond, Multiple Target Tracking Lecture Notes, UCLA, Oct. 1985; Revised 10 December
1990, Technology Training Corporation. Torrance, CA.

4 S.S. Blackman, Multiple Target Tracking with Radar Applications, Artech House, Dedham, MA
(1986).

5 O.E. Drummond, "The Algorith-n Development Challenge of Tracking the SDI Dense Threat", IST
Workshop on SDI. BM/C3 , IDA. Alerandria, VA, 24 November 1987.
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track-to-truth associations but in dense target environments and for some MTT algorithms

the concept of track purity loses some of its meaning.

We suggest a method for track-to-truth association based on a global nearest

neighbor assignment approach. At each of the designated evaluation times, a global nearest

neighbor assignment algorithm is executed to uniquely associate tracks and targets. After

tracks and truth have been associated, we can evaluate performance criteria for the two

functions of a multiple target tracking algorithm:

1. Data association. This function selects the observations to be used by the track

filter to update the state estimate. Its measures of effectiveness will be track
purity and misassociation. They measure the consistency With which a track is

updated with measurements from a single target or a set of targets,
respectively; and,

2. Track filter. This function transforms sensor measurements into estimates of
the target's state, usually the target's trajectory described by position, velocity,

*Q acceleration, etc, and the target'S state estimation error covariance. The
distance between the state estimate and the true state and the credibility of the
filter calculated 'covariance matrix measure the performance of the tracking
"filter, which is affected by data misassociation and other errors.

S i7.1 AN ASSIGNMENT APPROACH TO TRACK-TO-TRUTH
ASSOCIATION

SA method for associating track-to-truth by assignment algorithm was introduced1' 2

in connection with the so-called "basis free" estimation, in which none of the information

sets used in the estimation process is employed to distinguish one target estimate from

another. This approach has been adapted by the SDI Panels on Tracking. In the

assignment approach to performance evaluation, state estimates are paired to their nearest

true target state using a global nearest neighbor criterion, which is equivalent to finding the

most probable global hypothesis.

The implementation of the approach is conceptually simple. The estimates are

treated as one data set and the truth as another. At each evaluation time an assignment

algorithm is applied to these two data sets so that there is a unique assignment of tracks to

truth. As a consequence, no track (state estimate) is assigned to more than one true target

and no true target is assigned to more than one track.

Local nearest neighbor assignments of track-to-truth are to be avoided. Target-

based local nearest neighbor, in which each target is independently associated with the

7-3
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nearest ta .-- does not penalize missed tracks: each target can always find a track because

tracks ca- Lj-. assigned to more than one target. Similarly, track-based local nearest

neighbor, in which each track is independently associated with the nearest target, does not

penalize redundant or spurious tracks: each track can always find a target because targets

can be assigned to more than one track. Because some tracks or targets are not assigned in

the global nearest neighbor assignment algorithm, missed, redundant, and spurious tracks

can be identified.

In order to perform the assignment, a cost (goodness-of-fit) must be computed for

each candidate assignment: a pair of track and true target state. The optimal global

assignment finds the combination of pairs that provides ihe minimum sum of costs. Each

cost can be viewed as minus the log of the likelihood that the estimated target is the true

target for a given pairing. In most cases thiscan be computed as a chi-square statistic. The

parameter or state vector used in the cost can contain only position information or additional

elements (such as velocity estimates and intensity) depending on the application. 4

Simplifications to the chi-square statistic can reduce the computing cost. For
example, the off diagonal terms in the covariance matrix can be omitted so that the chi-
square statistic is simply a weighted sum of squares. Furthermore, this approach to
performance evaluation employs methods akin to the "assignment approach" (global nearest
neighbor) for multiple target tracking (MTT). Many of the specific techniques used in
MTr, such as gating, "binning," and "sparse" assignment algorithms, can be used to

reduce the cost of performance evaluation when using the described assignment approach.
However, when using the sparse version of the assignment algorithm, such as the JVC6 or

the Stephens-Krupa sparse Munkres, 7 it is important to pre-condition the input to the

assignment algorithm to ensure that there is a feasible sol'tion.2, 9

7.2 DATA ASSOCIATION AND TRACK PURITY

With the assigned track-truth pairs, data association, track purity, and track

accuracy can be evaluated. Kovacich and Chong have described a scoring method for data

/0

6 O.E. Drammond, D.A. Castanon, and M.S. Bellovin, "Comparison of '2-D Assignment Algorithms for
Sparse, Rectangular, Floating Point, Cost Matrices," Journal of the SD! Panels on Tracking. Issue No.
4/1990, 15 Dec. 1990, pp. 4-81 to 4-97.

7 P.A. Stephens "and N.R. Krupa, A Sparse Matrix Technique for the Munkres Algorithm, 1979 Summer
Computer Simulation Confercnc,. Toronto, Canada, July 1979, pp. 44-47.
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association and track purity that develops its own assignment of track-to-truth. 8 They

define loose sense track purity over a specified time interval as a measure of effectiveness

for data association to evaluate the degree of consistent updating with measurements from

the same set of targets. This would be more appropriate in environments where often a

group of closely spaced objects generate a single observation, They define strict sense

"track purity over a specified time interval to evaluate the degree to which a track uniquely

represents a single target. This would be more appropriate to evaluating tracking in support

of target discrimination.

Consider the three 'different classes of data association algorithms discussed in

Dt Section B: unique assignments to global or local nearest neighbors; probability data

association and joint probability data association (PDA/JPDA); and multiple hypothesis

{ tracking. (MHT). In nearest neighbor assignment,, a track consists of a sequence of

individual observations, one from each frame of data, each arising from none, one, or more

targets. In the PDAIJPDA approach, at each update time, the set of observations with

feasible association to the track are associated with the track in proportion to their

probability of association. A composite state estimate results which is a weighted sum of

the observations., A PDA/JPDA track, therefore, consists of a sequence of sets of

" observations, a set for each update time, each set consisting of individual observations,
each observation arising from none, one, or more targets.

Now consider Reid's MHT9 approach which generates at each update time a set of
competing data association hypotheses that Reid called cluster hypotheses. Each cluster

hypothesis consists of one possible set of observation-to-track associations; a particalar

observation-to-track association may appear in many different cluster hypthe ies.

Therefore, Reid's MHT produces tracks that consist of a sequence of ind.vi.ual
observations, one from each frame of data, each arising from none, one, or more t-.rgets,

/ similar to nearest neighbor assignment. Hypotheses or tracks considered unlikel ,. say

those below some threshold, are dropped, while those that are "similar",according to 3-,nje

criteria are combined.

Kovacich and Chong develop different track purity scores for what they termn is

single frame assignment logic, PDA/JPDA assignment logic, and MHT approaches. For

8 Michael Kovacich and Chee Chong, "Definition or Track Purity," The Proceedings of the SD! Tracking
Panels, Issue No. 3/1989, pp. 1-13 to 1-19, 1 July 1989.

9 Donald B. Reid, "An Algorithm for Tracking Multiple Targets," IEEE Transactions on AWoMraic
Control, Vol. AC-24, No. 6, December 1979, pp. 843-854.
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simplicity we will focus on track purity measures for what they refer to as single frame

assignment logic and apply it to the Example of Fig. 7-1 without regard to the data

association algorithm actually used. Kovacich and Chong's other methods are described in

the appendix to this Section.

TRA OBSERVATION SE

I (ab) (ab) a b 0

2 0 0 b a (ab)

3 (cd) (cd) (cd) (cd) ,

4 c (ef) e FA

5 f f. e f

6 e 0 0 0 e

Figure 7-1. Example of a Set of Hypothetical Track Histories. The letters
Indicate the target identifications that contributed to the observations

used by the tracks. Parentheses Indicate target composition
of unresolved closely spaced objects.

Kovacich and Chong divide track purity for single frame assignment logic into three

steps. For this purpose, Kovacich and Chong denote the sequence of individual

o - observations in a track as the Measurement Set for that track. The set of targets that

generate an observation they denote as the Target Set for the observation. In the first step,

compute a score function that serves as the criteria by which tracks are associated to truth:

Step I Given track i and target j, for strict sense track purity compute

SSS(ij) = NM(ij)/NMEAS(i)

where

NM(ij) = number of observations in the Measurement Set for track i

whose Target Set contains target j.

NMEAS(i) = numoer of observations in the Measurement Set for track i. 5

For loose sense track purity, given track i and target j, compute

LSS(ij) = NM(ij)/NTGTS(i)

"where •
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NTGTS(i) = • NTGTS(i,k)
k

* /NTGTS(i,k) = number of targets in the target set for the observation on

!j the kth observation opportunity.
!',

The results of applying these to the Example are in Fig. 7-2. It seems that neither
properly accounts for a failure to associate any observation in the frame with the track, for
example, because of an empty gate. We suggest an alternative score, given track i and

+ .'• target j

SA(ij) = NM(ij)/NMEASF()

where

NMEASF(j) = number of frames that target j was detected in the field of
view during the time interval over which track purity is
being evaluated.

This score function is also in Fig. 7-2.

In the second step, Kovacich and Chong associate targets to tracks in strict sease
track purity using the SSS(ij) as the score matrix in an assigimaent algorithm. Observe that
many assignment algorithms are designed to minimize the total cost (an undesirable
quantity) rather than maximize the total profit/benefit (a desirable quantity). Distance is a
cost but track purity is a profit/benefit. Thus, when assigning tracks to truth based on track
purity, which is to be maximized, the individual profits have to be converted to cost, fcr
instance, by changing the sign. At the conclusion of this step, each track i will be
associated with a unique target, A(i), or none.

In loose sense track purity, Kovacich and Chong prescribe the use of LSS(ij), as
well as other criteria-which they do not specify-to determine the set of targets to associate
'with the track. They define ASET(i) as the set of targets associated with track i in this
manner.

We input the score functions, SSS(ij), LSS(ij), and SA(ij) to both JVC and
* Stephens and Krup,. -,parse Munkres assignment algorithms, the results-for which are in

Fig. 7-3. There are other "optimal" solutions besides those in Fig. 7-3: Note the
ambiguous '-ick-to-truth association among tracks I and 2 and targets a and b. Note that
"we used a global nearest neighbor assignment algorithm with LSS because the "other
criteria" were not specified.
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3/43/4 0 00 0

2/32/3 0o0 0 0
0 0 4/4 4/4 0 0

SSSj) -
0 0 0 0 3/5 2/5,
0 0 0 0 1/4 3/4

0 0 0 0 1/1 0O

3/6 3/60 0 0 0

2/42/40 0 0 0

0 o 4/84/80 0- LSS~ij) -
0 00 0 3/5 25
0 0 0 0 1/4 3/4

0 0 0 0 1/1 0

3/53/50 0 00

2/52/50 0 0 0

0 04/44/4 0 0SA('J) -

0 0 0 0 3/52/5

00 0 01/53/5
0 0 '0 0 1/5 0

Figure 7-2. Track Purity Input Matrices for Assignment Algorithms.
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STRICT SENSE TARGET-TRACK ASSIGNMENTS

1 `. a
2'`. ,b

3.. C
44 -

5. f
6. e

LOOSE SENSE TARGET-TRAC( ASSIGNMENTS

2 `. a
2~ b
34. C
44. o

54. f
"6.. e

TARGET-TRACK ASSIGNMENTS BASED ON SA(i

1,. a

2. b

34.. c4 e.

5 4. f

6. -

Figure 7-3. Optimal Assignments of Tracks to Truth Using Both the JVC and the
Stephens and Krupa Sparse Munkres Assignment Algorithms, Which Arrived at

the Same Answer. Note that there are other "optimal" solutions, that Is,
alternate solutions with the same value for the optimization criteria.
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Last, in the third step, compute the track purity:

&=I For track i compute the strict sense track purity

TPSS(i) = NPURE(iA(i))/NMEAS(i)

where

TPSS(i) = the strict sense track purity for track i.

NPURE(i,A(i)) n number of pure observations in the measurement set for

track i generated by target A(i), where a pure observation

is one whose source is a single target;

for track i compute the loose sense track purity

TPLS(i) = " LSS(ij).

j e ASET(i)

For comparison we used SA(ij) for both the cost in the assignment algorithm and 0

to computer the track purity. The various track purity scores are in Fig. 7-4.

STRICT SENSE LOOSE SENSE LOOSE SENSE
PURIT PURITY PURITY

TRACK # TPSS TPLS SA

1 .25 .50 .60
".33 .50 .40 0
0 .50 1.0

4 0 0 .60
.75 .75 .60
1.0 1.0 0

Figure 7-4. Track Purity Scores

We feel that for performance evaluation at each evaluation time the association of

tracks to truth should be done once and for all using a global nearest neighbor assignment
algorithm based on a chi-square distance measure. These pairings would then be used to
tr',. uate track purity, misassociations, state estimation errors, and the credibility of the filter
".; -(!ated covariance. With this approach, the assignment step in Kovacich and Chong,

,.. 2 would be obviated.
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Evýaluation of the data association function in 9u,?pon of target discrimination

should na penalize for unassociated observations but should penalize for associations to

tunresolved closely spaced objects, the wrong object, or false alarms. If one were to make
.'issignments as per Kovacich and Chong for strict sense track purity, then the method

should be revised to use TPSS(ij) rather than SSS(ij).,

* Evaluation of misassociation performance should penalize for unassoc' ted

observations as well as associations to the wrong object and false alarms and should -ot

penalize for associations to unresolved closely spaced objects. If one were to naa.,'
assignments as per Kovacich and Chong for loose sense track purity, then the methodi

* should be revised to use SA(ij) rather than LSS(ij).

7.3 STATE ESTIMATION ACCURACY AND FILTER COVARIANCE
CREDIBILITY

One straightforward measure of state estimation accuracy is the error magnitude.
Direct measures include position error, velocity error, etc., defined in the usual manner as

the magnitude of the position component, velocity component, etc., of the state estimation
error vector. Clearly, the smaller the errors the better but, for tracking considered

* independently of other functions, how small is small enough? Because of the complicated
statistics describing position error, velocity error, etc. (square root of a sum of squared
jointly normally distributed random variables), we cannot easily determine small enough in
a statistical sense.

* State estimation error magnitude is related to bias error for which we will define
statistical tests. We will also define statistical tests to measure filter covariance credibility,
which occurs when the filter calculated covariance substantially differs from the actual
covariance in the state estimation error. Together bias and filter covariance credibility

* measure the accuracy and consistency of the modeling assumptions of the tracking filter in
relation to the actual target dynamics and tie effects of measurement errors,
misassociations, and unresolved closely spaced objects. We will define tests for statistical
significance for each and determine confidence intervals to specify when the state estimates

* are good and the filter calculated covariance is credible.

To test statistical* significance in single target tracking we would collect sample
statistics on the stochastic processes beirng modeled by performing many Monte Carlo runs
of the identical tcenario for a single target and its single track. The presence of

* misassociations in multiple target tracking can introduce ambiguities in isolating the same
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sll|e Owck-target pair over many Monte Carlo runt In a dense tvironment, the source of

the measurements in a track could vary with each run, as may the association of the track to

truth. For multiple target tracking simulations. one could perform one run of a large-scale

Monte Carlo simulation in place of repeating the target scenario over many Monte Carlo

runs. The collectionof dte M independent track-target pairs in the single Monte Carlo run
of a dense target tracking problem forms an ensemble of sorts over which we can compute
simple statistics for the stochastic processes being modeled. A weakness of tNis approach

pertains to differences in the covariance matrices across the M tracks: all the tracks will not

be of the same age and model nonlinearities and variations in local observation densities can

causc differences in track covariances.

7.3.1 State Estimation Error

Given the assignmert of tracks to truth for various evaluation times, the accuracy of
the track state estimate can be evalIjated. The type of estimates (predicted, filtered, or
smoothed) must be selected as well as the evaluation times. For each of the M track-target
pairs that are associated, compute the state estimation error as the difference bet% een the
true target state x(k) and the track estimated state at time k given measurenr-nts to time n:

i n) - x0)-i(kln) (7-1)

The usual magnitude of the position estimation error, also known as the root-sum-
square (RSS) error, is computed by taking the square root of the sum of the squared
position components of the state estimation error vector.' The RSS velocity error (and
acceleration, etc.) is similarly computed. The sample cumulative probability distribution of
the error magnitudes can be plotted for all the target-track pairs. The missed, redundant,
and spiirious tracks cannot be readily included in this plot unless default values are
prcvided for the tracks and the targets that are not paired, that is, left unassigned by the
global nearest neighbor assignment algorithm.

Both the mean and median of the RSS errors can be computed. Before computing
these parameters, especially the mean, it may be acceptable to edit out the M worst tracks.
If this editing is allowed for the system being evaluated, then the value of M should be
specified in advance and the worst tracks should include all the spurious and missed
tracks., The requirement might also establish that a specified percentage of the tracks have

an error less than a given magnitude.
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7.3.2 State Estimation Bias

To test the bias of the state estimate, which is a vector, test each component of the
state estim-iton error individually Under the hypothesis that the state estimate is unbiased,

and assuming that the error is normally distributed and, therefore, each component,

indexd by the subscript i, is also normally ceistributed:
/

0- &(k In) - N[OPM(k 10I (7-2)

Assuming that each of the M state estimntion errors is independent with identical mean and

covariance, we can compute the sample mean and sample variance to form a test statistic as
follows.

The sample mean of the ith component of the state estimation error over the M
trwak-target pairs is defined as

- le11  (7-3)

4 where j indexes the M track-target pairs and the time indices have been dropped for clarity.

The sample variance is defined as

* ~ ~j~~E1 J, ) (7-4
J-1

We can form a chi-squared distributed random variable with M-1 degrees of freedom as

%.,(M- 1) -2

Xi- 1 (7-5)

6 ~Now define a 7 Fro Pr'an., unit variance normally distributed random variable

z - e/X - N(o,) (7-6)

* so that a t distributed random variable can be defined
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, x , .... (7-7)

7Uw it omponent o(the sate estimatior emr is unbiased when

where for a given c'idlence level, I - a, tn follows from the proprties of the

t-ditibution function.

"7.3.3 Filter Covarlance Credibility

If the estimate is unbiased then we can test for , ter covariance credibility by
forming another chi-squared random variable following Bar-Shalom and Fortmann.10 For
each o the M trwk-target pairs. compute the state estimaoon error chi-squares for the entire
state, position only, or velocity only, etc. For insutce, the full state chi-square is:

e(k I n)- IT(k I n) P"(kI n) I(k n a) (7-9)
2

where P is, the filter calculated covariance matrix and na is the chi-square's number of
degrees of freedom, i.e., the dimension of the full state. We test the credibility of the filter
calculated covatriance P by forming an ensemble average chi-square as the sample mean
over the M individual track-target pair chi-squares, which are assumed independent.

IM
i(k n)- - , eJ(k In) (7-10)SM J.1

where j indexes the M track-tar-get pairs. Then

10 Yankov Bar-Shalom and Thomas E. Fomnann, Tracking and Data Association, Academic Press,

Oflando, Forida (1988).
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and the confidence interval is computed from

Prob MW (kI n)c[rsr2 ]) - 1- ,e.g. *-.05 (7-12)

For a given confidence level, I - ox, r, and r2 will follow from the chi-square distribution

with M. degrees of freedom. The state estimation errors are consistent with the filter

calclated covariances if

i(k I n) c [r,/ r2/M] . (7-13)

In addition to the scores for performance evaluatr )n described, additional measures
* of performance will be needed. Some additional tracking scores of interest include the

number of missing tracks, redundant tracks, and spurious tracks. These can be readily
computed after the tracks are uniquely assigned to the true targets. Performance evaluation
typically includei scores of track length and length of time to initiate a track (track

* acquisition). The various tracking stages of initiation, maintenance, and termination for a
single sensor or multiple sensors as appropriate must also be considered.

A number of tracking scores have been listed by Willmans t and others. 12 There
has been little in the literature, however, on how to assign tracks to target truth in order to
fairly evaluate diverse tracking algorithms and adequately penalize missing, redundant, and
spurious tracks. This is not a significant issue for tracking a single target or in a sparse
environment. As system requirements call for tracking multiple targets in a moderate to

Sdense environment or with low observables, this becomes a major concern in performance
* evaluation. The evaluation methods described are designed to address these challenging

conditions by uniquely assigning tracks to true targets.

11 W.W. Willman, Some Performance Results for Recursive Mutiwarget Correlator-Tzacker Algorithms,
Naval Research Laboratory, Washington, D.C., NRL Report 8423, July 1980.

12 Op. Cit., Bar-Shalom and Fortmann and Blackman (see p. 7-14).
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7.4 CONCLUSIONS

We have presented soring methods being pursued by the SDI Pawls on Tracki, ag,

The wmethods attempt to represent the needs of a broad variety of MT algorithms to be

judged fairly, The scoring n•thods are part of an ongoing process and are not to be

consdered the last word on the subject. 7%e Panelh have suggested that for the irne bein$

these methods be adopted throughout the SDI tracking community, particularly for the

Surveillance Testbed activity,
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APPENDIX, CHAPTER 7,

The following is from Kovacich and Chong,13

Strict Sense Track Purity for JPDA

Step I Given track i and. e J. compute

0 Si,J) = P(iJ) /NIEAS(i)

wbere

POJ) = P(ijk)
k

P(ij.k) = Probability that the composite measurement for track
i on measurement oppotmuity k contains target J.

NMEAS(i) - Number of composite measurements in the

measurement set for track i.

Step 2 Uniquely assign targets using the S(ij) matrix as the score or cost matrix. At the
conclusien of this step, each trck i will be assigned to a unique target A(i).

Step 3 Assign a measurement v% the track for each measurement opportunity in which a
measurement occurred. For exar iple, assign the measurement that has the highest weight
in the composite measurement. Denote the measurement assigned to the track the Assigned

Measurement.,

* Step 4 Cozapute track purityfor track i:

TPSS(i) = NPURE(i,A(i))/NMEAS(i)

where

*t NPURE(iA(i)) = Number of pure Assigned Measurements in the
Measurement Set for track i generated by A(i).

0 13 Op. cit.. Bar-Shalom and Fortmann and Blackman (see p. 7-14).
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NMXAS() - Number of measurements In the measurement seo
fkw trck 1.

* Strict Som. Track Purity for Multiple Hypothuuis Logics with
Composlte Tracks

Step I Select one of the feasible track% to represent the camnly site track. Ior example, the
fhasible track that has the highest weighting could be selected,

St" 2 feform Steps 1. 2, and 3 in the Track Purity calculation for Single Frame
Assignment Logics using the selected feasible track. The truack purity for composite track i
is defined io be the wrack purity of the selected feasible track. 4

L oeew Sense Track Purity for the JPDA Logic

Step I Given track i and target j compute

S(ij) - POij) N7GTS(i)

POiJ) =••Ptij,k)
k I

P(iJ,k) Probability that the composite measumment for track
Ion measurement opportunity k contains target j.

NTG*TSQ) - NTG;TS(i~k)
k

NTGTr(i,k) - Number of targets in the target set for the
�erent on the kth measurement opportunity.

Step 2 Using S(ij), as well as other criteria, determine the set of targets to assign to the
tak Let ASET(i) specify the set of targets assigned to track i.

Step 3 Compute track purity for track i

TPLSQ) - • S(ij)
j * ASET(i)
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Loose S•an Truck Purity for Multiple Hypothesis Logics with
Composite Tracks

Stop I Perform Steps 1. 2. and 3 in the Track Purity calculation for Single Frame
Assignent Logics to calculate a track purity for each feasible track:

TP(iJ) * Track purity of feasible track in composite wack i.

Slep 2 Compute the track purity for the composite track i as follows:

TPO) = £P(ij)TP(iJ)

who

PiJ) P Probability that the composite track i contains

feasible track J.
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